Systematic Circuit Analysis (T\&R Chap 3)

Node-voltage analysis
Using the voltages of the each node relative to a ground node, write down a set of consistent linear equations for these voltages
Solve this set of equations using, say, Cramer's Rule

Mesh current analysis
Using the loop currents in the circuit, write down a set of consistent linear equations for these variables. Solve.

This introduces us to procedures for systematically describing circuit variables and solving for them

Nodal Analysis

Node voltages

Pick one node as the ground node \underline{I}
Label all other nodes and assign voltages $v_{A}, v_{B}, \ldots, v_{N}$ and currents with each branch i_{1}, \ldots, i_{M}
Recognize that the voltage across a branch is the difference between the end node voltages
Thus $v_{3}=v_{B}-v_{C}$ with the direction as indicated
Write down the KCL relations at each node

Write down the branch $i-v$ relations to express branch currents in terms of node voltages
Accommodate current sources
Obtain a set of linear equations for the node voltages

Nodal Analysis - Ex 3-1 (T\&R, 5th ed, p.72)
Apply KCL

Write the element/branch eqns

Substitute to get node voltage equations

Solve for v_{A}, v_{B}, v_{C} then $i_{0}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$

Nodal Analysis - Ex 3-1 (T\&R, 5th ed, p.72)

Apply KCL
Node A: $i_{0}-i_{1}-i_{2}=0$
Node B: $i_{1}-i_{3}+i_{5}=0$
Node C: $i_{2}-i_{4}-i_{5}=0$
Write the element/branch eqns

$$
\begin{array}{ll}
i_{0}=i_{S 1} & i_{3}=G_{3} v_{B} \\
i_{1}=G_{1}\left(v_{A}-v_{B}\right) & i_{4}=G_{4} v_{C} \\
i_{2}=G_{2}\left(v_{A}-v_{C}\right) & i_{5}=i_{S 2}
\end{array}
$$

Substitute to get node voltage equations $\begin{aligned} & \text { Node A: }\left(G_{1}+G_{2}\right) v_{A}-G_{1} v_{B}-G_{2} v_{C}=i_{S 1} \\ & \text { Node B: } \\ & \text { Node C: } \\ & \text { - } G_{1} v_{A}+\left(G_{1}+G_{3}\right) v_{B}=i_{S 2} \\ & -G_{2} v_{A}+\left(G_{2}+G_{4}\right) v_{C}=-i_{S 2}\end{aligned}\left(\begin{array}{ccc}G_{1}+G_{2} & -G_{1} & -G_{2} \\ -G_{1} & G_{1}+G_{3} & 0 \\ -G_{2} & 0 & G_{2}+G_{4}\end{array}\right)\left(\begin{array}{l}v_{A} \\ v_{B} \\ v_{C}\end{array}\right)=\left(\begin{array}{c}i_{S 1} \\ i_{S 2} \\ -i_{S 2}\end{array}\right)$
Solve for v_{A}, v_{B}, v_{C} then $i_{0}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$

$$
\left(\begin{array}{ccc}
G_{1}+G_{2} & -G_{1} & -G_{2} \\
-G_{1} & G_{1}+G_{3} & 0 \\
-G_{2} & 0 & G_{2}+G_{4}
\end{array}\right)\left(\begin{array}{l}
v_{A} \\
v_{B} \\
v_{C}
\end{array}\right)=\left(\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
-i_{S 2}
\end{array}\right)
$$

Systematic Nodal Analysis

Writing node equations by inspection Note that the matrix equation looks
 just like $\underline{G} v=\underline{i}$ for matrix \underline{G} and vector \underline{v} and \underline{i} \underline{G} is symmetric (and non-negative definite)

Diagonal (i,i) elements: sum of all conductances connected to node i
Off-diagonal (i, j) elements: -conductance between nodes i and j
Right-hand side: current sources entering node i
There is no equation for the ground node - the column sums give the conductance to ground

Nodal Analysis Ex. 3-2 (T\&R, 5th ed, p.74)

Node A:
Conductances

Source currents entering
Node B:
Conductances

Source currents entering

Node C:
Conductances

Source currents entering

Nodal Analysis Ex. 3-2 (T\&R, 5th ed, p.74)

Node A:
Conductances

$$
G / 2_{B}+2 G_{C}=2.5 G
$$

Source currents entering $=i_{S}$
Node B:
Conductances

$$
G / 2_{A}+G / 2_{C}+2 G_{\text {ground }}=3 G
$$

Source currents entering $=0$

Node C:
Conductances

$$
2 G_{A}+G / 2_{B}+G_{\text {ground }}=3.5 G \quad \text { Source currents entering }=0
$$

Nodal Analysis - some points to watch

1. The formulation given is based on KCL with the sum of currents leaving the node
$0=i_{\text {total }}=G_{\text {AtoB }}\left(v_{A}-v_{B}\right)+G_{\text {Atoc }}\left(v_{A}-v_{C}\right)+\ldots+G_{\text {AtoGround }} v_{A}+i_{\text {leavingA }}$ This yields
$0=\left(G_{\text {AtoB }}+\ldots+G_{\text {AtoGround }}\right) v_{A}-G_{A t o B} V_{B}-G_{A t o C} V_{C \ldots} . . i_{\text {enteringA }}$
$\left(G_{A t o B}+\ldots+G_{A t o G r o u n d}\right) v_{A}-G_{A t o B} V_{B}-G_{A t o C} V_{C \ldots}=i_{\text {enteringA }}$
2. If in doubt about the sign of the current source, go back to this basic KCL formulation
3. This formulation works for independent current sources
For dependent current sources (introduced later) use your wits

Nodal Analysis Ex. 3-2 (T\&R, 5th ed, p. 72)

Nodal Analysis Ex. 3-2 (T\&R, 5th ed, p. 72)

$$
\left(\begin{array}{cc}
1.5 \times 10^{-3} & -0.5 \times 10^{-3} \\
-0.5 \times 10^{-3} & 2.5 \times 10^{-3}
\end{array}\right)\binom{v_{A}}{v_{B}}=\binom{i_{S 1}}{-i_{S 2}}
$$

Solve this using standard linear equation solvers
Cramer’s rule
Gaussian elimination
Matlab
MAE40 Linear Circuits

Nodal Analysis with Voltage Sources

Current through voltage source is not computable from voltage across it. We need some tricks!
They actually help us simplify things
Method 1 - source transformation

Then use standard nodal analysis - one less node!

Nodal Analysis with Voltage Sources 2

Method 2 - grounding one node

This removes the v_{B} variable
(plus we know $v_{A}=v_{S}$) - simpler analysis But can be done once per circuit

Nodal Analysis with Voltage Sources 3

Method 3
Create a supernode
Act as if A and B were one node KCL still works for this node Sum of currents entering supernode box is 0
Write KCL at all N-3 other nodes
($\mathrm{N}-2$ nodes less Ground node)
using v_{A} and v_{B} as usual

+ Write one supernode KCL

+ Add the constraint $v_{A}-v_{B}=v_{S}$
These three methods allow us to deal with all cases

Nodal Analysis Ex. 3-4 (T\&R, 5th ed, p. 76)

This is method 1 - transform the voltage sources
Applicable since voltage sources appear in series with Resist
Now use nodal analysis with one node, A

Nodal Analysis Ex. 3-4 (T\&R, 5th ed, p. 76)

This is method 1 - transform the voltage sources
Applicable since voltage sources appear in series with Resist
Now use nodal analysis with one node, A

$$
\begin{aligned}
\left(G_{1}+G_{2}+G_{3}\right) v_{A} & =G_{1} v_{S 1}+G_{2} v_{S 2} \\
v_{A} & =\frac{G_{1} v_{S 1}+G_{2} v_{S 2}}{G_{1}+G_{2}+G_{3}}
\end{aligned}
$$

Nodal Analysis Ex. 3-5 (T\&R, 5th ed, p. 77)
 What is the circuit input resistance viewed through v_{s} ?

Nodal Analysis Ex. 3-5 (T\&R, 5th ed, p. 77)

Rewrite in terms of v_{S}, v_{B}, v_{C}
This is method 2 What is the circuit input resistance viewed through v_{s} ?

$$
\begin{aligned}
& v_{A}=v_{S} \\
& -0.5 G v_{A}+3 G v_{B}-0.5 G v_{C}=0 \\
& -2 G v_{A}-0.5 G v_{B}+3.5 v_{C}=0
\end{aligned}
$$

$$
3 G v_{B}-0.5 G v_{C} \square 0.5 G v_{S}
$$

$$
-0.5 G v_{B} \square 3.5 G v_{C} \square 2 G v_{S}
$$

$$
v_{B}=\frac{2.75 v_{S}}{10.25}, v_{C}=\frac{6.25 v_{S}}{10.25}
$$

Solve

$$
\begin{aligned}
& i_{i n}=\frac{v_{S}-v_{B}}{2 R}+\frac{v_{S}-v_{C}}{R / 2}=\frac{11.75 v_{S}}{10.25 R} \\
& R_{\text {in }}=\frac{10.25 R}{11.75}=0.872 R
\end{aligned}
$$

MAE40 Linear Circuits

Nodal Analysis Ex. 3-6 (T\&R, 5th ed, p. 78)

Nodal Analysis Ex. 3-6 (T\&R, 5th ed, p. 78)

KCL for supernode: $i_{1}+i_{2}+i_{3}+i_{4}=0$
Or, using element equations

$$
G_{1} v_{A}+G_{2}\left(v_{A}-v_{B}\right)+G_{3}\left(v_{C}-v_{B}\right)+G_{4} v_{C}=0
$$

Now use $v_{B}=v_{S 2}$

$$
\left(G_{1}+G_{2}\right) v_{A}+\left(G_{3}+G_{4}\right) v_{C}=\left(G_{2}+G_{3}\right) v_{S 2}
$$

Other constituent relation

$$
v_{A}-v_{C}=v_{S 1}
$$

Mesh Current Analysis

Dual of Nodal Voltage Analysis with KCL
Mesh Current Analysis with KVL
Mesh = loop enclosing no elements
Restricted to Planar Ccts - no crossovers (unless you are really clever)
Key Idea: If element K is contained in both mesh i and mesh j then its current is $i_{k}=i_{i}-i_{j}$ where we have taken the reference directions as appropriate
Same old tricks you already know

Mesh A: $-v_{0}+v_{1}+v_{3}=0 \quad v_{1}=R_{1} i_{A} \quad v_{0}=v_{S 1}$
Mesh B: $-v_{3}+v_{2}+v_{4}=0 \quad v_{2}=R_{2} i_{B} \quad v_{4}=v_{S 2}$

$$
v_{3}=\boldsymbol{R}_{3}\left(i_{A}-i_{B}\right)
$$

$\left(R_{1}+R_{3}\right) i_{A}-R_{3} i_{B}=v_{S 1}$
$-R_{3} i_{A}+\left(R_{2}+R_{3}\right) i_{B}=-v_{S 2}$

$$
\left(\begin{array}{cc}
R_{1}+R_{3} & -R_{3} \\
-R_{3} & R_{2}+R_{3}
\end{array}\right)\binom{i_{A}}{i_{B}}=\binom{v_{S 1}}{-v_{S 2}}
$$

Mesh Analysis by inspection $R i \square v_{S}$

Matrix of Resistances R
Diagonal $i i$ elements: sum of resistances around loop
Off-diagonal $i j$ elements: - resistance shared by loops i and j Vector of currents i

As defined by you on your mesh diagram
Voltage source vector V_{S}
Sum of voltage sources assisting the current in your mesh If this is hard to fathom, go back to the basic KVL to sort these directions out

MAE40 Linear Circuits

Mesh Analysis by inspection $R i \square v_{S}$

Matrix of Resistances R
Diagonal $i i$ elements: sum of resistances around loop
Off-diagonal $i j$ elements: - resistance shared by loops i and j Vector of currents i

As defined by you on your mesh diagram
Voltage source vector V_{S}
Sum of voltage sources assisting the current in your mesh If this is hard to fathom, go back to the basic KVL to sort these directions out

$$
\left(\begin{array}{c}
R_{1}+R_{2} \\
0 \\
-R_{2}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & -R_{2} \\
R_{3}+R_{4} & -R_{3} \\
-R_{3} & R_{2}+R_{3}
\end{array}\right)\left(\begin{array}{l}
i_{A} \\
i_{B} \\
i_{C}
\end{array}\right)=\left(\begin{array}{l}
-v_{S 2} \\
v_{S 2} \\
-v_{S 1}
\end{array}\right)
$$

Mesh Equations with Current Sources

Duals of tricks for nodal analysis with voltage sources

1. Source transformation to equivalent

T\&R, 5th ed, Example 3-8 p. 91

$\left(\begin{array}{cc}6000 & -2000 \\ -2000 & 11000\end{array}\right)\binom{i_{A}}{i_{B}}=\binom{5}{-8}$
$i_{A}=0.6290 \mathrm{~mA}$
$i_{B}=-0.6129 \mathrm{~mA}$
$i_{O}=i_{A}-i_{B}=1.2419 \mathrm{~mA}$

Mesh Analysis with ICSs - method 2

Current source belongs to a single mesh

Same example

$$
\begin{aligned}
6000 i_{A}-2000 i_{B} & =5 \\
-2000 i_{A}+11000 i_{B}-4000 i_{C} & =0 \\
i_{C} & =-2 \mathrm{~mA}
\end{aligned}
$$

Same equations! Same solution

Mesh Analysis with ICSs - Method 3

Supermeshes - easier than supernodes
Current source in more than one mesh and/or not in parallel with a resistance

1. Create a supermesh by eliminating the whole branch involved
2. Resolve the individual currents last

$$
\begin{gathered}
R_{1}\left(i_{B}-i_{A}\right)+R_{2} i_{B}+R_{4} i_{C}+R_{3}\left(i_{C}-i_{A}\right)=0 \\
i_{A}=i_{S 1} \\
i_{B}-i_{C}=i_{S} 2
\end{gathered}
$$

Exercise from old midterm

Set up mesh analysis equations

Do not use any source transformation!

Supermesh

$$
i_{2}-i_{3}=3
$$

$$
10 i_{3}+20 i_{3}+20\left(i_{2}-i_{1}\right)=0
$$

Remaining mesh
$20 i_{1}+20\left(i_{1}-i_{2}\right)=20$

Summary of Mesh Analysis

1. Check if cct is planar or transformable to planar
2. Identify meshes, mesh currents \& supermeshes
3. Simplify the cct where possible by combining elements in series or parallel
4. Write KVL for each mesh
5. Include expressions for ICSs
6. Solve for the mesh currents

Linearity \& Superposition

Linear cct - modeled by linear elements and independent sources
Linear functions
Homogeneity:

$$
f(K x)=K f(x)
$$

Additivity:

$$
f(x+y)=f(x)+f(y)
$$

Superposition -follows from linearity/additivity
Linear cct response to multiple sources is the sum of the responses to each source

1. "Turn off" all independent sources except one and compute cct variables
2. Repeat for each independent source in turn
3. Total value of all cct variables is the sum of the values from all the individual sources

Superposition

Turning off sources
Voltage source
Turned off when $v=0$ for all i a short circuit

Current source
Turned off when $i=0$ for all v an open circuit

We have already used this in Thévenin and Norton equiv

Superposition

$$
\begin{gathered}
\text { Find } v_{0} \text { using } \\
\text { superposition } \\
v_{0}=\frac{R_{2}}{R_{1}+R_{2}} v_{s}+\frac{R_{1} R_{2}}{R_{1}+R_{2}} i_{s} \\
v_{01}=\frac{R_{2}}{R_{1}+R_{2}} v_{s} \\
v_{02}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} i_{s}
\end{gathered}
$$

Where are we now?

Finished resistive ccts with ICS and IVS
Two analysis techniques - nodal voltage and mesh current Preference depends on simplicity of the case at hand
The aim has been to develop general techniques for access to tools like matlab

Where to now?
Active ccts with resistive elements - transistors, op-amps
Life starts to get interesting - getting closer to design
Capacitance and inductance - dynamic ccts
Frequency response - s-domain analysis
Filters

