MAE40 - Linear Circuits - Fall 25 Midterm #1, October 21

Instructions

- (i) You can use a two-sided 1-page handwritten cheatsheet.
- (ii) The exam has 2 questions for a total of 20 points and 2 bonus points.
- (iii) You have from 2:00pm to 3:20pm to do the exam, but it should require less time for you to complete it.
- (iv) You can use a calculator with no communication capabilities.
- (v) In your responses, clearly articulate your reasoning, and properly justify the steps.
- (vi) **Important:** start each part below on a separate page and write your name & PID at the top of each page.

Good luck!

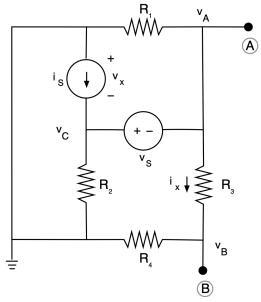


Figure 1: Circuit for all questions.

1. Circuit analysis

Part I: [6 points] Formulate node-voltage equations for the circuit in Figure 1. Use the node labels provided. Clearly indicate the final equations and circuit variable unknowns. Write the final equations **in matrix form** in the unknown node-voltages. **Do not modify the circuit or the labels**. No need to solve any equations!

Part II: [2 points] Provide expressions for the voltage v_x and the current i_x in terms of node voltages.

Part III: [2 points] Among the choices for ground other than the one in Figure 1, are there any that are better? Why?

2. Equivalent circuits

For this question, in the circuit in Figure 1, assume $v_S=10V$, $i_S=2A$, $R_1=R_2=20\,\Omega$, $R_3=10\,\Omega$, and $R_4=5\,\Omega$. Do the following:

Part I: [5 points] Turn off the sources and find the equivalent resistance as seen from terminals (A) and (B).

Part II: [3 points] Given your knowledge of Norton/Thévenin equivalence and your answer to Part I, if the short-circuit current when connecting terminals A and B is $i_{sc}=1A$ (going downwards), what is the open-circuit voltage v_{oc} as seen from terminals A and B for the circuit in Figure 1?

Part III: [2 points] Use your answers to Part I and Part II to find out the power delivered to a $R = 2\Omega$ resistor connected to terminals $\widehat{(A)}$ and $\widehat{(B)}$.

Part IV: [Extra 2 points] What would happen if the resistor connected in Part III has a power rating of 1 *W*? Could you have prevented this from happening by using a fuse? What is the maximum current rating that the fuse could have?