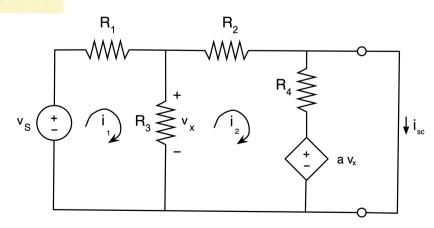

1._ Part I

There are no correct sources in the cranit, so we can just directly set up much correct equations. We do it by inspection,

$$\begin{pmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 + R_4 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} V_S \\ -aV_Z \end{pmatrix}$$

[+2 points]


We need to account for the presence of the dependent source (in fact, the 2 equations

above have 3 conknowns, i_1, i_2, V_z). Looking at the circuit, we see that $V_z = R_3 (i_1 - i_2)$ [+1 point]

This gives a total of 3 egs. in 3 vilenowns.

(One could also substitute V_2 in first unthix system, and write 2 egs on 2 unknowns i_1,i_2) [+1 point]

Part I

With the terminals (P&B) connected, we work love three meshes. We write mesh correct egentions again by inspection

$$\begin{pmatrix}
R_1 + R_3 & -R_3 & 0 \\
-R_3 & R_1 + R_3 + R_4 & -R_4
\end{pmatrix} \qquad i_2 \qquad = \qquad -av_2$$

$$0 & -R_4 & R_4
\end{pmatrix} \qquad i_{SC} \qquad 4v_2$$

$$43 \text{ points}$$

We again have to accommodate the presence of the dependent surre,

$$V_{z} = R_{3}(i_{1}-i_{2}) \qquad [+1]$$

This yields a total of 4 egs in 4 orlanowns,

$$\begin{pmatrix}
R_1 + R_3 & -R_3 & 0 & 0 \\
-R_3 & R_2 + R_3 + R_4 & -R_4 & a
\end{pmatrix}$$

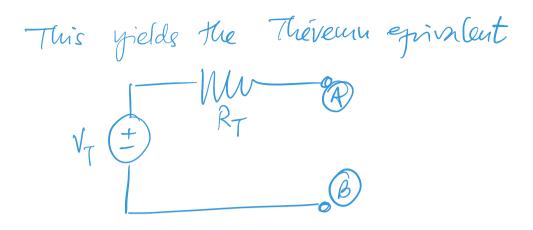
$$\begin{pmatrix}
R_1 + R_3 & -R_3 & 0 & 0 \\
0 & -R_4 & R_4 & -a
\end{pmatrix}$$

$$\begin{pmatrix}
V_3 \\
V_2 \\
V_3
\end{pmatrix}$$

$$\begin{pmatrix}
V_3 \\
V_4
\end{pmatrix}$$
One could also substitute us out curite 3 efs in 3 or linours)

Part III

From Part I, we know that the openavail voltage for the circuit in Fyre 1 is


$$= \frac{(1-a)R_3R_4V_S + a(R_2+R_4)R_3V_S}{R_1R_2+(1-a)R_1R_3+R_2R_3+R_1R_4+L_3R_4} =$$

$$= \frac{(R_4 + aR_2)R_3 V_S}{R_1 R_2 + (1-a) R_1 R_3 + R_2 R_3 + R_1 R_4 + R_3 R_4}$$

$$= \frac{(R_4 + aR_2)R_3 V_S}{R_1 R_2 + (1-a) R_1 R_3 + R_2 R_3 + R_1 R_4 + R_3 R_4}$$

From Port II, we know the short-arent arrent, so

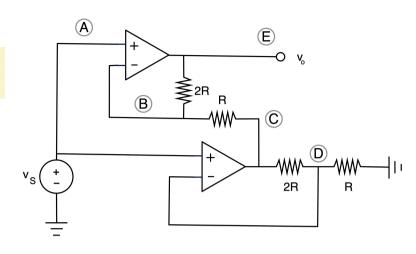
$$R_{T} = \frac{V_{OC}}{i_{SC}} = \frac{(R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3})R_{4}}{R_{1}R_{2} + (1-a)R_{1}R_{3} + R_{2}R_{3} + R_{1}R_{4} + R_{3}R_{4}}$$
[71] [72]

Part IV

From Port III, ne have

$$V_{AB} = \frac{(R_4 + aR_2) R_3 V_S}{R_1 R_2 + (1-a) R_1 R_3 + R_2 R_3 + R_1 R_4 + R_3 R_4}$$

The downwent form in the numerator is the one with a R3. Same thing for the demonstrator. Therefore extra [71 point]


$$V_{AB} \approx \frac{\alpha R_2 R_3}{-\alpha R_1 R_3} V_S = -\frac{R_2}{R_1} V_S$$

This is a model for an inverting op-amp.

[+1 point]

2._

As instructed, we use wodal analysis to figure out the output voltage. Note $V_0 = V_{\mp}$ [+1 point] We know $V_A = V_S$.

KCL at node @ yields

$$\frac{1}{2R}(V_B - V_E) + \frac{1}{R}(V_B - V_C) = 0 \quad [+1 \text{ point}]$$

(here, we have used op-amp ideal conditions, in particular $i_p = i_N = 0$)

KCL at usde D yields

$$\frac{1}{2R}(V_D - V_C) + \frac{1}{R}(V_D - 0) = 0$$
 [+1 point]

We don't write KCL ess for the support modes and E. But we resurt to ideal anditions to state

$$V_A = V_B$$
 Q $V_A = V_D$ [+2 points]

Solving for V_C in KCLDD, we get $V_D - V_C + 2V_D = 0 = D V_C = 3V_S$

Therefore,
$$V_0 = -3V_S$$

[+1 point]

Part I

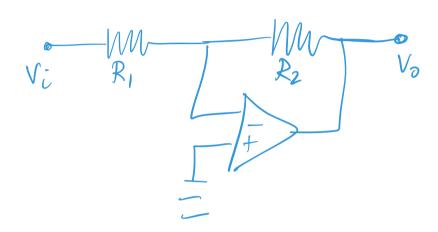
With $V_{CC} = \pm 25V$ for op-amp at the top and $V_{CC} = \pm 50V$ for op-amp at the soltom, he have

$$V_c = 3V_s = 3.9 = 27V < 50V$$

However,

$$-3V_{S} = -27V < -25V$$

So the op-amp at the top gets saturated and hence $V_0 = -25V$. [41 point]


The power amound by the had resistive is then _ 2

$$P_L = \frac{4}{R_L} v_o^2 = \frac{25^2}{100} = 6.25W$$

So the engineer was surprised b/c the saturation lowered the power the engineer was expecting, $\frac{27^2}{100} = 7.29W$. [+1 point]

Part II

Since we want to generate Vo=-3Vs, we ve an inverting op-ours.

 $V_0 = -\frac{R_2}{R_A} V_c$

We only have 3 resistors: 2 of value R and 1 of value R_2 to make $\frac{R_2}{R_1} = 3$.

If we put Rand R2 in parallel, in obtain

$$-\frac{R}{W}$$

$$= -\frac{W}{R^{2}/2}$$

$$R_{2} = \frac{R^{2}/2}{3R/2} = \frac{R}{3}$$

So vor proposed desijn is

So fluit
$$V_0 = \frac{-R}{R/3} V_{\tilde{t}} = -3V_{\tilde{t}}$$

[+1 point for vong inverting op-amp, +1 point for correct design]