MAE40 Linear Circuits (for non-electrical engs)

Topics covered

Circuit analysis techniques

Kirchoff" s Laws - KVL, KCL
Nodal and Mesh Analysis
Thévenin and Norton Equivalent Circuits
Resistive circuits, RLC circuits
Steady-state and dynamic responses
Impulse and step responses Laplace transforms
Sinusoidal steady-state response
Circuit design techniques
Active circuit elements - dependent sources and operational amplifiers
Feedback basics
Signal filtering

What do I expect you to know?

Prerequisites
Mathematics 21D or 20D (some are doing this concurrently)
Solution of sets of linear equations
$A x=b$ equations for vector x given matrix A and vector b
Solution of constant coefficient linear ordinary differential equations
Laplace transform
Initial conditions and forced response
Complex analysis
Numbers, arithmetic, magnitudes and phases, poles, zeros
Physics 2B
Behavior of circuit elements: R, L and C
Underlying physical principles

Why should you be excited about MAE40?

Linear circuits are exceptionally well described by simple and powerful mathematics
The quality of concordance between measured physical behavior and mathematical description is amazing

This is an analog computer from around 1963 It was used to solve nonlinear ODEs via analog circuitry
It contained: about 20 integrators based on valves or transistors, some nonlinear function blocks using diodes, comparators
This was the state of the art for much physical system simulation
It relies on ideas underpinning MAE40
The tools of MAE40 are immediately useful in design

Why should you still be excited about MAE40?

The front and back ends of your digital cell phone are comprised of analog circuits
This is pretty much true of all digital technology
Why does the stagecoach wheel appear to rotate backwards?
Aliasing
A high frequency masquerading as a low frequency
Anti-aliasing filters MUST be used in all
sampled data systems
After MAE40 you will be able to start designing such anti-aliasing filters

The real thing!

Why should you still be excited about MAE40?

You will learn how these knobs and plugs work:

We will not have time to cover this one:

Why should you still be excited about MAE40?

theguardian

Google" Customs
News \mid US \mid World \mid Sports \mid Comment \mid Culture \mid Business \mid Money \mid Environment \mid Science
News World news \rangle Nuclear weapons

US nearly detonated atomic bomb over North Carolina - secret document Exclusive: Journalist uses Freedom of Information Act to disclose 1961 accident in which one switch averted catastrophe

Ed Pilkington in New York
Y/ Follow
The Follow
The Guardian, Friday 20 September 201312.03 EDT

- Jump to comments (1115)

The bomb that nearly exploded over North Carolina was 260 times more powerful than the device which devasted Hroshima in 1945. Photo: Three Lions/Getty Images

A secret document, published in declassified form for the first time by the Guardian today, reveals that the US Air Force came dramatically close to detonating an atom bomb over North Carolina that would have been 260 times more powerful than the device that devastated Hiroshima.
The document, obtained by the investigative journalist Eric Schlosser under the Freedom of Information Act, gives the first conclusive evidence that the US was narrowly spared a disaster of monumental proportions when two Mark 39 hydrogen bombs were accidentally dropped over

MAE40 Linear Circuits
"The bombs fell to earth after a B-52 bomber broke up in mid-air, and one of the devices behaved precisely as a nuclear weapon was designed to behave in warfare: its parachute opened, its trigger mechanisms engaged, and only one lowvoltage switch prevented untold carnage."
"... a senior engineer in the Sandia national laboratories responsible for the mechanical safety of nuclear weapons concludes that 'one simple, dynamo-technology, low voltage switch stood between the United States and a major catastrophe." "

Circuit variables (T\&R Chap 1)

Charge and Energy
-1 coulomb $(\mathrm{C})=6.25 \times 10^{18}$ electrons' charge
1 ampere (A) $=1$ coulomb/second
Current is a measure of charge passing
Direction of flow is of positive charge
This is important for understanding some devices
Voltage/potential difference/electromotive force/tension
Voltage measures the energy gained by a charge
1 joule $(\mathrm{J}) /$ coulomb $=1 \operatorname{volt}(\mathrm{~V})$
Voltage is measured between two points (potential difference)

$$
v=\frac{d w}{d q}
$$

This is akin to gravitational potential and fluid flow or temperature and heat flow

Circuit variables (contd)

Power is the rate of energy change per unit time $p=\frac{d w}{d t}$ watts (W)
Note the chain rule $\quad p=\left(\frac{d w}{d q}\right)\left(\frac{d q}{d t}\right)=v i$
The instantaneous electrical power associated with a voltage and a current flow is given by the product $v \times i$
Passive sign convention
Power is positive when a device absorbs power
Signs are measured as illustrated

In the illustration the current into the device is the negative of that into the rest of the circuit

An example

The figure at right depicts the circuit inside my flashlight

The devices are the battery and the lamp
A voltmeter reads $v(t)$ is 12 V
An ammeter reads $i(t)$ is -1.5 A
Which device is the battery and which is the lamp? How much power is being consumed by the lamp?
Using the passive sign convention
The power absorbed by device A is $12 \times-1.5 \mathrm{~W}=-18 \mathrm{~W}$
A is the battery and B is the lamp, which consumes 18 W

Circuit variables (contd)

Ground

Because all voltages are measured between two points, there is no absolute voltage - it is a potential
In circuits we often refer all voltages of points as being relative to a fixed point or ground voltage

This is depicted via the \qquad symbol
 $\stackrel{-{ }_{-}^{\mathrm{G}}}{-}$
The terms v_{A} etc mean the voltage at A relative to G
This is like referring heights relative to sea level
Gravity is also a potential
Check out the elevator buttons in the Math \& App Phys Building!

Circuit variables (contd)

A circuit is a collection of interconnected electrical devices

For us:

All electromagnetic interactions in the circuit take place within the devices (This is a lumped-parameter circuit)
The circuit devices are connected together by wires which are ideal
They have the same voltage at both ends instantaneously
They propagate current without loss instantaneously
They may be stretched arbitrarily without changing properties
All circuit devices have at least two terminals and are assumed not to accumulate charge - current in equals current out
A node is the junction of terminals of two or more devices
A loop is a closed path formed by tracing through an ordered sequence of nodes without passing through any node more than once

Circuit variables

The important physical circuit variables are currents into and voltages across circuit elements and their associated power consumption or production.
Circuit analysis consists of solving for the circuit variables in a given circuit
Circuit design or synthesis consists of constructing a circuit whose circuit variables exhibit a specified behavior

The topology of a circuit is the key structure
It can be stretched and wrapped around without changing circuit variables
Nodes can be stretched and shrunk to cover many terminals

Circuit Topology

This is the circuit diagram of an audio amplifier
It shows the relationship between parts but not their actual physical location
The ground/earth is likely the in chassis or case
The output transistors BD912 and BD911 will need to be attached to an external heat sink
The op-amp OPA604 will be board mounted

The volume control needs to be accessible

Circuit Topology - high power amplifier with complementary HEXFETS

Circuit Diagram

HEXFET - power MOSFET from International Rectifier

Circuit Board Layout

Figure 2. Amplifier Printed Circuit Board Layout

Basic Circuit Analysis (T\&R Chap 2)

Kirchoff" s Current Law (KCL)
The algebraic sum of currents entering a node is zero at every instant
This is a restatement of the principle of conservation of charge Alternatively, but not so nice,
The sum of currents entering a node is equal to the sum of currents leaving a node at every instant
KCL provides linear constraints between the currents in a circuit
In a circuit containing a total of N nodes there are only $N-1$ independent KCL connection equations

T\&R, 5th ed, Exercise 2-1 p 22

Write KCL at nodes A, B, C, D
Node A: $\quad-i_{1}-i_{2}=0$
Node B: $\quad i_{2}-i_{3}-i_{4}=0$
Node C: $\quad i_{4}-i_{5}-i_{6}=0$
Node D:
If $i_{1}=-1 \mathrm{~mA}, i_{3}=0.5 \mathrm{~mA}, i_{6}=0.2 \mathrm{~mA}$,

find the rest

$$
\begin{aligned}
& i_{2}=1 \mathrm{~mA} \\
& i_{4}=0.5 \mathrm{~mA} \\
& i_{5}=0.3 \mathrm{~mA}
\end{aligned}
$$

Note that we have 4 nodes
But only 3 independent equations

$$
\left(\begin{array}{cccccc}
-1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 \\
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5} \\
i_{6}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Kirchoff"s Voltage Law (KVL)

The algebraic sum of voltages around a loop is zero at every instan ${ }^{x}$ The picture can't be displayed.

This is really a restatement of voltage as a potential, effectively a statement of the principle of conservation of energy

Circuit Analysis

One way to consider the analysis of a circuit (i.e. the computation of the currents in and voltage across the circuit elements) is through the specification of constraints on these variables
KCL and KVL provide one set of constraints on circuit variables reflecting connection topology
The $i-v$ properties of the devices themselves provide further constraints
N nodes and E circuit elements
$N-1$ independent KCL relations
$E-N+1$ independent KVL relations (number of independent loops)
E independent $i-v$ characteristics
$2 E$ circuit variables
If we keep to linear devices then we have linear circuit analysis
$2 E$ Linear algebraic equations for $2 E$ variables

Linear Circuit Elements

Linearity in $v-i$ relations
Doubling v doubles i and vice versa $i=\alpha \nu$
Straight lines in $i-v$ plane
Note that $i=\alpha \nu+\beta$ describes an affine relation
Resistor
$\nu=R i$ or $i=G v$ Ohm's Law
R resistance in ohms (Ω), G conductance in siemens (S)
Power $P=i^{2} R=v^{2} / R=v^{2} G$
A resistor always absorbs power $-i-v$ line has positive slope
This is an instantaneous linear element
We will look at circuit elements with memory like C and L later in the course

Time out puzzle

We have three lamps - red, green and blue - connected to three switches as in the diagram

The lamps are outside the switch room and we are alone
What single test can we perform by playing with the switches to determine which switch is connected to which light?

I know of two solutions, one of physicists, one of engineers

Linear Circuit Elements (contd)

Independent Voltage and Current Source ($\underset{i}{ }$ IVS and ICS)
$\operatorname{IVS} v=v_{s}$ for any i
$\operatorname{ICS} i=i_{s}$ for any v
Affine elements rather than linear, but we admit them

Most sources of electrical energy (batteries, generators, power systems) are modeled as voltage sources. Examples of current sources include diode and transistor current sources

Open circuit and short circuit - variants of ICS and IVS resp.
Open circuit $i=0$ for any v
Short circuit $v=0$ for any $i \quad$ Same as $R=0$
These are truly linear since the curves pass through $(0,0)$
Switches - either o.c. or s.c.

Example 2-10 (T\&R, 5th ed, p. 31)

Write a complete set of equations for each element

Write a complete set of connection equations

Solve these equations for all currents and voltages

Example 2-10 (T\&R, 5th ed, p. 31)

Write a complete set of equations for each element

$$
\begin{aligned}
& v_{A}=30 \mathrm{~V} ; \\
& v_{1}=100 i_{1} ; \\
& v_{2}=200 i_{2} ; \\
& v_{3}=300 i_{3} ;
\end{aligned}
$$

Write a complete set of connection equations

$$
-i_{A}-i_{1}-i_{3}=0 ; \quad i_{1}-i_{2}=0 ; \quad-30+v_{3}=0 ; \quad v_{1}+v_{2}-v_{3}=0 ;
$$

Solve these equations for all currents and voltages

$$
\begin{aligned}
& v_{A}=30 \mathrm{~V} ; \quad v_{1}=10 \mathrm{~V} ; \quad v_{2}=20 \mathrm{~V} ; \quad v_{3}=30 \mathrm{~V} ; \\
& i_{A}=-200 \mathrm{~mA} ; \quad i_{1}=i_{2}=i_{3}=100 \mathrm{~mA} ;
\end{aligned}
$$

All you ever wanted to know about resistors...

Resistors are color coded to indicate their value

Black	Brown	Red	Orange	Yellow	Green	Blue	Violet	Grey	White
0	1	2	3	4	5	6	7	8	9

and tolerance

5%	10%	20%
Gold	Silver	Empty

This is a $1 \mathrm{~K} \Omega$ resistor with 5% tolerance

Resistors come at standard values (e.g., at 10\% tolerance)

1	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	Nominal
.9	1.08	1.35	1.62	1.98	2.43	2.97	3.51	4.23	5.04	6.12	7.38	Lower
1.1	1.32	1.65	1.98	2.42	2.97	3.63	4.29	5.17	6.16	7.48	9.02	Upper

Even more than you ever wanted to know about resistors ...

The distribution of resistances Why should this be so?

How can we get a 258.3Ω resistor? Keep testing the ones in the box A really finely tunable potentiometer (variable resistor) - a trimpot

Nominal value A coarsely tunable potentiometer in parallel with a lower R Make one from high precision components

Another important characteristic of R is the power rating Why?

