Active Circuits: Life gets interesting

 Active cct elements - operational amplifiers (OPAMPS) and transistorsDevices which can inject power into the cct
External power supply - normally comes from connection to the voltage supply "rails"
Capable of linear operation - amplifiers and nonlinear operation - typically switches
Triodes, pentodes, transistors

Active Cct Elements

Amplifiers - linear \& active Signal processors
Stymied until 1927 and Harold Black
\quad Negative Feedback Amplifier

Control rescues communications
Telephone relay stations manageable against manufacturing variability
Linearity
Output signal is proportional to the input signal
Note distinction between signals and systems which transform them
Yes! Just like your stereo amplifier
Idea - controlled current and voltage sources

A Brief Aside - Transistors

Bipolar Junction Transistors Semiconductors - doped silicon
n-doping: mobile electrons Si doped with Sb, P or As p-doping: mobile holes Si doped with B, Ga, In
Two types npn and pnp

Heavily doped Collector and Emitter

Lightly doped Base and very thin
Collector and Emitter thick and dopey
Need to bias the two junctions properly
Then the base current modulates a strong $\mathrm{C} \rightarrow \mathrm{E}$ current
Amplification $i_{C}=\beta i_{B}$

Transistors

Common Emitter Amplifier Stage
Biasing resistors R_{1} and R_{2} Keep transistor junctions biased in amplifying range
Blocking capacitors $\mathrm{C}_{\mathrm{B} 1}$ and $\mathrm{C}_{\mathrm{B} 2}$
Keep dc currents out Feedback capacitor C_{E}

Grounds emitter at high frequencies

Small changes in $v_{i n}$
Produce large changes in $\mathrm{v}_{\text {out }}$

Linear Dependent Sources

Active device models in linear mode
Transistor takes an input voltage v_{i} and produces an output current $i_{0}=g v_{i}$ where g is the gain
This is a linear voltage-controlled current source VCCS

$\operatorname{CCCS} \beta$ current gain

MAE40 Linear Circuits

Linear dependent source (contd)

Linear dependent sources are parts of active cct models - they are not separate components
But they allow us to extend our cct analysis techniques to really useful applications
This will become more critical as we get into dynamic ccts
Dependent elements change properties according to the values of other cct variables

Source on

Source off

Cct Analysis with Dependent Sources

Golden rule - do not lose track of control variables Find i_{O}, v_{O} and P_{O} for the 500Ω load

Current divider on LHS $i_{x}=\frac{2}{3} i_{S}$
Current divider on RHS $\quad{ }_{i}{ }_{O}=\frac{3}{8}(-48) i_{x}=-18 i_{x}=-12 i_{S}$
Ohm's law $\quad v_{O}=i_{O} 500=-6000 i_{S}$
Power $\quad p_{O}=i O^{v} O^{=72,000} i_{S}^{2}$

Analysis with dependent sources

Power provided by ICS $\quad p_{S}=(50| | 25) i_{S}^{2}=\frac{50}{3} i_{S}^{2}$
Power delivered to load
$72000 i_{S}^{2}$
Power gain

$$
G=\frac{p_{O}}{P_{S}}=\frac{72000 i_{S}^{2}}{50 / 3 \frac{i}{S}}=4320
$$

Where did the energy come from?
External power supply

Nodal Analysis with Dependent Source

KCL at node C $G_{1}\left(v_{C}{ }^{-v}{ }_{S 1}\right)+G_{2}\left(v_{C}{ }^{-v} v_{S 2}\right)+G_{B}{ }^{v} C^{+} G_{P}\left(v_{C}{ }^{-v} v_{D}\right)=0$
KCL at node D $\quad G_{P}\left(v_{D}{ }^{-v} C\right)+G_{E} v_{D}-\beta i_{B}=0$
CCCS element description $i_{B}=G_{P}\left({ }^{v} C^{-v_{D}}\right)$

Substitute and solve

$$
\begin{aligned}
& \left(G_{1}+G_{2}+G_{B}+G_{P}\right) v_{C}-G_{P} v_{D}=G_{1} v_{S 1}+G_{2} v_{S 2} \\
& \left.-(\beta+1) G_{P} v_{C}+\left[(\beta+1) G_{P}+G_{E}\right]\right]_{D}=0
\end{aligned}
$$

T\&R, 5th ed, Example 4-3 p 148

Find v_{O} in terms of v_{S} What happens as $\mu \rightarrow \infty$?

Node A:

$$
\left(G_{1}+G_{2}+G_{3}\right) v_{A}-G_{3} v_{B}=G_{1} v_{S}
$$

Node B:

$$
v_{B}=-\mu v_{x}=-\mu v_{A}
$$

Solution:

$$
v_{O}=v_{B}=-\mu v_{A}=\left(\frac{-\mu G_{1}}{G_{1}+G_{2}+(1+\mu) G_{3}}\right) v_{S}
$$

For large gains $\mu:(1+\mu) G_{3} \gg G_{1}+G_{2}$

$$
v_{O} \approx\left[\frac{-\mu G_{1}}{(1+\mu) G_{3}}\right] v_{S} \approx-\frac{R_{3}}{R_{1}} v_{S}
$$

This is a model of an inverting op-amp

Mesh Current Analysis with Dependent Sources

Dual of Nodal Analysis with dependent sources

Treat the dependent sources as independent and sort out during the solution

T\&R, 5th ed, Example 4-5 BJTransistor

Needs a supermesh
Current source in two loops without R in parallel
Supermesh = entire outer loop
Supermesh equation

$$
i_{2} R_{E}-V_{\gamma}+i_{1} R_{B}+V_{C C}=0
$$

Current source constraint

$$
i_{1}-i_{2}=\beta i_{B}
$$

Solution

$$
i_{B}=-i_{1}=\frac{V_{C C}-V_{\gamma}}{R_{B}+(\beta+1) R_{E}}
$$

T\&R, 5th ed, Example 4-6 Field Effect Transistor

Since cct is linear $v_{O}=K_{1} v_{S 1}+K_{2} v_{S 2}$
Solve via superposition
First $v_{S 1}$ on and $v_{S 2}$ off, then $v_{S 1}$ off and $v_{S 2}$ on
This gives K_{1} and K_{2}

Operational Amplifiers - OpAmps

Basic building block of linear analog circuits

Package of transistors, capacitors, resistors, diodes in a chip
Five terminals

- Positive power supply $V_{C C}$
- Negative power supply - $V_{C C}$
- Non-inverting input v_{p}
- Inverting input v_{n}
- Output v_{o}

Linear region of operation

$$
v_{O}=A\left(v_{p}-v_{n}\right)
$$

Ideal behavior

$$
10^{5}<A<10^{8}
$$

Saturation at $\mathrm{V}_{\mathrm{CC}} /-\mathrm{V}_{\mathrm{CC}}$ limits range

Real OpAmp (u741)

MAE140 Linear Circuits

Ideal OpAmp

Equivalent linear circuit Dependent source model

$$
\begin{array}{ll}
10^{6}<R_{I}<10^{12} \Omega & \infty \Omega \\
10<R_{O}<100 \Omega & 0 \Omega \\
10^{5}<A<10^{8} & \infty
\end{array}
$$

Need to stay in linear range
$-V_{C C} \leq v_{O} \leq V_{C C}$
$-\frac{V_{C C}}{A} \leq v_{p}-v_{n} \leq \frac{V_{C C}}{A}$
Ideal conditions

$$
\begin{aligned}
& v_{p}=v_{n} \\
& i_{p}=i_{n}=0
\end{aligned}
$$

Non-inverting OpAmp - Feedback

What happens now?

Voltage divider feedback

$$
v_{n}=\frac{R_{2}}{R_{1}+R_{2}} v_{O}
$$

Operating condition $v_{p}=v_{S}$

$$
v_{O}=\frac{R_{1}+R_{2}}{R_{2}} v_{S}
$$

Linear non-inverting amplifier

Gain $\mathrm{K}=\frac{R_{1}+R_{2}}{R_{2}}$
With dependent source model

$$
v_{O}=\frac{R_{I} A\left(R_{1}+R_{2}\right)+R_{2} R_{O}}{R_{I}\left(A R_{2}+R_{O}+R_{1}+R_{2}\right)+R_{2}\left(R_{1}+R_{O}\right)} v_{S}
$$

T\&R, 5th ed, Example 4-13

Analyze this

$$
\begin{aligned}
& i_{p}=0 \\
& K_{S}=\frac{v_{p}}{v_{S}}=\frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Ideal OpAmp has zero output resistance

R_{L} does not affect v_{O}

$$
\begin{aligned}
K_{\mathrm{AMP}}= & \frac{v_{O}}{v_{p}}=\frac{R_{3}+R_{4}}{R_{4}} \\
& K_{\text {Total }}=K_{S} K_{\mathrm{AMP}}=\frac{v_{O}}{v_{S}}=\left[\frac{R_{2}}{R_{1}+R_{2}}\right]\left[\frac{R_{3}+R_{4}}{R_{4}}\right]
\end{aligned}
$$

Voltage Follower - Buffer

Feedback path

$$
v_{n}=v_{O}
$$

Infinite input resistance

$$
i_{p}=0, \quad v_{p}=v_{S}
$$

Ideal OpAmp

$$
v_{p}=v_{n}
$$

$$
v_{O}=v_{S} \quad i_{O}=\frac{v_{O}}{R_{L}}
$$

Loop gain is 1
Power is supplied from the $\mathrm{Vcc} /-\mathrm{Vcc}$ rails

OpAmp Ccts - inverting amplifier

Input and feedback applied at same terminal of OpAmp R_{2} is the feedback resistor So how does it work? KCL at node A

$$
\frac{v_{N}-v_{S}}{R_{1}}+\frac{v_{N}-v_{O}}{R_{2}}+i_{N}=0
$$

$$
i_{N}=0, v_{N}=v_{p}=0
$$

$v_{O}=-K v_{S}$ hence the name

Non-inverting amp

Inverting Amplifier (contd)

Current flows in the inverting amp

$$
i_{1}=\frac{v_{S}}{R_{1}}, R_{i n}=R_{1}
$$

$$
i_{2}=\frac{v_{O}}{R_{2}}=\frac{-v_{S}}{R_{1}}=-i_{1}
$$

$$
i_{L}=\frac{v_{O}}{R_{L}}=-\frac{R_{2}}{R_{1}} \times \frac{1}{R_{L}} \times v_{S}
$$

OpAmp Analysis - T\&R, 5th ed, Example 4-14

Compute the input-output relationship of this cct
Convert the cct left of the node A to its Thévenin equivalent
$v_{T}=v_{O C}=\frac{R_{2}}{R_{1}+R_{2}} v_{S}$
$R_{T}=R_{\text {in }}=R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}+R_{2}}$
Note that this is not the inverting amp gain times the voltage divider gain
There is interaction between

$$
v_{O}=-\frac{R_{4}}{R_{T}} v_{T}
$$ the two parts of the cct $\left(R_{3}\right)$

This is a feature of the inverting amplifier

$$
=-\left[\frac{R_{4}\left(R_{1}+R_{2}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}\right]\left[\frac{R_{2}}{R_{1}+R_{2}}\right] v_{S}
$$ configuration

$$
=-\frac{R_{2} R_{4}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} v_{S}
$$

Summing Amplifier - Adder

So what happens?
Node A is effectively grounded
$v_{n}=v_{p}=0$
Also $i_{N}=0$ because of $R_{\text {in }}$

$$
\begin{aligned}
& i_{1}+i_{2}+i_{F}=0 \\
& \frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{v_{O}}{R_{F}}=0
\end{aligned}
$$

This is an inverting summing amplifier

$$
\begin{aligned}
v_{O} & =\left(-\frac{R_{F}}{R_{1}} \frac{)}{J^{J_{1}}}+\left(-\frac{R_{F}}{R_{2}} \frac{)}{)^{\nabla_{2}}}\right.\right. \\
& =K_{1} v_{1}+K_{2} v_{2}
\end{aligned}
$$

Ever wondered about audio mixers? How do they work?

Mixing desk - Linear ccts

$\begin{aligned} \text { Virtual ground at } \mathrm{v}_{\mathrm{n}} v_{O} & =\left(-\frac{R_{F}}{R_{1}}\right) v_{1}+\left(-\frac{R_{F}}{R_{2}}\right) v_{2}+\ldots+\left(-\frac{R_{F}}{R_{m}}\right) v_{m} \\ \quad \begin{aligned} & \text { Currents add } \\ & \text { Summing junction }\end{aligned} & =K_{1} v_{1}+K_{2} v_{2}+\cdots+K_{m} v_{m}\end{aligned}$
Permits adding signals to create a composite
Strings+brass+woodwind+percussion
Guitars+bass+drums+vocal+keyboards

T\&R, 5th ed, Design Example 4-15

Design an inverting summer to realize $v_{O}=-\left(5 v_{1}+\mathbf{1 3} v_{2}\right)$
Inverting summer with $\frac{R_{F}}{R_{1}}=5, \frac{R_{F}}{R_{2}}=13$

Nominal values

If $v_{l}=400 \mathrm{mV}$ and $V_{C C}= \pm 15 \mathrm{~V}$ what is max of v_{2} for linear op^{n} ?
Need to keep $v_{o}>-15 \mathrm{~V}$

MAE40 Linear Circuits

$$
\begin{aligned}
-15 & <-\left(5 v_{1}+13 v_{2}\right) \\
15 & >5 v_{1}+13 v_{2} \\
v_{2} & <\frac{15-5 \times 0.4}{13}=1 \mathrm{~V}
\end{aligned}
$$

OpAmp Circuits - Differential Amplifier

OpAmp Circuits - Differential Amplifier

Use superposition to analyze $v_{2}=0$: inverting amplifier

$$
v_{O 1}=-\frac{R_{2}}{R_{1}} v_{1}
$$

$v_{l}=0$: non-inverting amplifier plus voltage divider
$v_{O 2}=\left[\frac{R_{4}}{R_{3}+R_{4}}\right]\left[\frac{R_{1}+R_{2}}{R_{1}}\right] v_{2}$

$$
v_{O}=v_{O 1}+v_{O 2}
$$

$$
=-\left[\frac{R_{2}}{R_{1}}\right] v_{1}+\left[\frac{R_{4}}{R_{3}+R_{4}}\right]\left[\frac{R_{1}+R_{2}}{R_{1}}\right] \begin{array}{ll}
v_{2} & K_{1} \text { inverting gain } \\
K_{2} \text { non-inverting gain }
\end{array}
$$

$$
=-K_{1} v_{1}+K_{2} v_{2}
$$

T\&R, 5th ed, Exercise 4-13

What is v_{O} ?
This is a differential amp
v_{1} is $10 \mathrm{~V}, v_{2}$ is 10 V
$\mathrm{R}_{1}=1 \mathrm{~K} \Omega \| 1 \mathrm{~K} \Omega=500 \Omega$
$\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=1 \mathrm{~K} \Omega$
$v_{O}=K_{1} v_{1}+K_{2} v_{2}$
$=-\frac{R_{2}}{R_{1}} v_{1}+\left[\frac{R_{1}+R_{2}}{R_{1}}\right]\left[\frac{R_{4}}{R_{3}+R_{4}}\right] v_{2}$
$=-20+3^{\prime} \frac{1}{2} \cdot 10=-5 \mathrm{~V}$

Lego Circuits

$$
K=\frac{R_{1}+R_{2}}{R_{2}}
$$

Non-inverting amplifier

$$
K=-\frac{R_{2}}{R_{1}}
$$

Inverting amplifier

Lego Circuits (contd)

$$
\begin{aligned}
K_{1} & =-\frac{R_{F}}{R_{1}} \\
K_{2} & =-\frac{R_{F}}{R_{2}}
\end{aligned}
$$

Inverting summer

Differential amplifier
MAE40 Linear Circuits

T\&R, 5th ed, Example 4-16: OpAmp Lego

So what does this circuit do?

Example 4-16: OpAmp Lego

So what does this circuit do?

It converts tens of ${ }^{\circ} \mathrm{F}$ to tens of ${ }^{\circ} \mathrm{C}$ Max current drawn by each stage is 1.5 mA

OpAmp Cct Analysis

What if circuit is not simple interconnection of basic building blocks? OpAmp Nodal Analysis Use dependent voltage source model

Identify node voltages
Formulate input node equations
Solve using ideal characteristic $v_{p}=v_{n}$

OpAmp Analysis - T\&R, 5th ed, Example 4-18

MAE40 Linear Circuits

OpAmp Analysis - T\&R, 5th ed, Example 4-18

Seemingly six non-reference nodes: A-E
Nodes A, B: connect to reference voltages v_{l} and v_{2}
Node C, E: connected to OpAmp outputs (forget for the moment)
Node D: $\left(G_{1}+G_{2}\right) v_{D}-G_{1} v_{C}-G_{2} v_{E}=0$
Node F: $\left(G_{3}+G_{4}\right) v_{F}-G_{3} v_{E}=0$
OpAmp constraints

$$
v_{A}=v_{1}=v_{D}, v_{B}=v_{2}=v_{F}
$$

$$
G_{1} v_{C}+G_{2} v_{E}=\left(G_{1}+G_{2}\right) v_{1}
$$

$$
G_{3} v_{E}=\left(G_{3}+G_{4}\right) v_{2}
$$

$$
v_{O}=v_{C}=\left[\frac{G_{1}+G_{2}}{G_{1}}\right] v_{1}-\frac{G_{2}}{G_{1}}\left[\frac{G_{3}+G_{4}}{G_{3}}\right] v_{2}
$$

OpAmp Analysis - T\&R, 5th ed, Exercise 4-14

OpAmp Analysis - T\&R, 5th ed, Exercise 4-14
Node A: $v_{A}=v_{S}$
Node B:
$\left(G_{1}+G_{2}\right) v_{B}-G_{1} v_{A}-G_{2} v_{C}=0$ Node C:
$\left(G_{2}+G_{3}+G_{4}\right) v_{C^{-}} G_{2} v_{B^{-}}-G_{4} v_{D}=0$

Constraints
$v_{B}=v_{p}=v_{n}=0$

Solve

$$
\begin{aligned}
& v_{C}=-\frac{G_{1}}{G_{2}} v_{S} \\
& v_{O}=v_{D}
\end{aligned}
$$

$$
\begin{aligned}
v_{O} & =\frac{\left(G_{2}+G_{3}+G_{4}\right)}{G_{4}} \cdot \frac{-G_{1}}{G_{2}} v_{S} \\
& =-\frac{\left(R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}\right)}{R_{1} R_{3}} v_{S}
\end{aligned}
$$

OpAmp Circuit Design - the whole point

Given an input-output relationship design a cct to implement it Build a cct to implement $v_{O}=5 v_{1}+10 v_{2}+20 v_{3}$

OpAmp Circuit Design - the whole point

Given an input-output relationship design a cct to implement it
Build a cct to implement $v_{O}=5 v_{1}+10 v_{2}+20 v_{3}$
Inverting summer followed by an inverter

$20 \mathrm{~K} \Omega \quad$ Example 4-21

How about this one?
Non-inverting amp $v_{p} \rightarrow v_{O}$

$$
v_{O}=K v_{p}=\frac{100^{\prime} 10^{3}+2.94^{\prime} 10^{3}}{2.94^{\prime} 10^{3}} v_{p}=35 v_{p}
$$

KCL at p-node with $i_{p}=0$

$$
\begin{aligned}
& \frac{v_{1}-v_{p}}{2^{\prime} 10^{4}}+\frac{v_{2}-v_{p}}{10^{4}}+\frac{v_{3}-v_{p}}{0.5^{\prime} 10^{4}}=0 \\
& 3.5 v_{p}=0.5 v_{1}+v_{2}+2 v_{3}
\end{aligned}
$$

Non-inverting summer
Fewer elements than invsummer + inverter
$R_{e q}=R_{1}\left\|R_{2}\right\| R_{3} \| \cdots R_{m}$
MAE40 Linear Circuits

Comparators - A Nonlinear OpAmp Circuit

We have used the ideal OpAmp conditions for the analysis of OpAmps in the linear regime

$$
v_{n}=v_{p}, \quad i_{n}=i_{p}=0 \text { if } A\left|v_{p}-v_{n}\right| \leq V_{C C}
$$

What about if we operate with $v_{p} \neq v_{n}$?
That is, we operate outside the linear regime.
We saturate!!

$$
\begin{aligned}
& v_{O}=+V_{C C} \text { if } v_{p}>v_{n} \\
& v_{O}=-V_{C C} \text { if } v_{p}<v_{n}
\end{aligned}
$$

Without feedback, OpAmp acts as a comparator
There is one of these in every FM radio!
"Analog-to-digital converter" - comparators

"Analog-to-digital converter" - comparators
Current laws still work

$$
i_{p}=i_{n}=0
$$

Parallel comparison
Flash converter
"3-bit" output
Not really how it is done
Voltage divider switched

Input	$\mathbf{v}_{\mathbf{O} 1}$	$\mathbf{v}_{\mathbf{O} 2}$	$\mathbf{v}_{\mathbf{O} 3}$
$1>\mathrm{v}_{\mathrm{S}}$	0	0	0
$3>\mathrm{v}_{\mathrm{S}}>1$	5	0	0
$5>\mathrm{v}_{\mathrm{S}}>3$	5	5	0
$\mathrm{v}_{\mathrm{S}}>5$	5	5	5

Digital-to-analog converter

Conversion of digital data to analog voltage value Bit inputs $=0$ or 5 V
Analog output varies between $v_{\text {min }}$ and $v_{\max }$ in 16 steps

Signal Conditioning

Your most likely brush with OpAmps in practice
Signal - typically a voltage representing a physical variable
Temperature, strain, speed, pressure
Digital analysis - done on a computer after
Anti-aliasing filtering - data interpretation
Adding/subtracting an offset - zeroing
Normally zero of ADC is 0 V
Scaling for full scale variation - quantization
Normally full scale of ADC is 5V
Analog-to-digital conversion - ADC
Maybe after a few more tricks like track and hold
Offset correction: use a summing OpAmp Scaling: use an OpAmp amplifier Anti-aliasing filter: use a dynamic OpAmp cct

Thévenin and Norton for dependent sources

Cannot turn off the ICSs and IVSs to do the analysis This would turn off DCSs and DVSs

Connect an independent CS or VS to the terminal and compute the resulting voltage or current and its dependence on the source

Compute v_{S} in response to i_{S} : $v_{S}=v_{T}+i_{S} R_{T}$

Or just compute the open-circuit voltage and the short-circuit current

Thévenin and Norton for dependent sources

Thevenin equivalent circuit?
Open-circuit voltage

$$
\left.\begin{array}{l}
v_{o c}=v_{s}-v_{x} \\
v_{o c}=v_{k}+a v_{x}=a v_{x}
\end{array}\right\} \Rightarrow v_{r}=v_{o c}=\frac{a}{1+a} v_{s}
$$

Thevenin resistance

$$
R_{r}=\frac{v_{o c}}{i_{s c}}=\frac{1}{1+a} R
$$

Short-circuit current

$$
\left.\begin{array}{l}
0=v_{s}-v_{x} \\
0=-R i_{s c}+a v_{x}
\end{array}\right\} \Rightarrow i_{s c}=\frac{a}{R} v_{s}
$$

What would instead be the resistance obtained by turning off IVS?

Where to now?

Where have we been?
Nodal and mesh analysis
Thévenin and Norton equivalence
Dependent sources and active cct models
OpAmps and resistive linear active cct design
Where to now?
Capacitors and inductors (Ch.6)
Laplace Transforms and their use for ODEs and ccts (Ch.9)
s-domain cct design and analysis (Ch.10)
Frequency response (Ch.12) and filter design (Ch.14)
We will depart from the book more during this phase

