## $s$-Domain Circuit Analysis

Operate directly in the s-domain with capacitors, inductors and resistors
Key feature - linearity is preserved
Ccts described by ODEs and their ICs
Order equals number of $C$ plus number of $L$
Element-by-element and source transformation
Nodal or mesh analysis for s-domain cct variables
Solution via Inverse Laplace Transform
Why?

1. Easier than ODEs
2. Easier to perform engineering design
3. Frequency response ideas - filtering

## Element Transformations

Voltage source
Time domain

$$
\begin{aligned}
& v(t)=v_{S}(t) \\
& i(t)=\text { depends on cct }
\end{aligned}
$$



Transform domain

$$
\begin{aligned}
& V(s)=V_{S}(s)=\mathcal{L}\left(v_{S}(t)\right) \\
& I(s)=\mathcal{L}(i(t)) \text { depends on cct }
\end{aligned}
$$

Current source

$$
\begin{aligned}
& I(s)=\mathcal{L}\left(i_{S}(t)\right) \\
& V(s)=\mathcal{L}(v(t)) \text { depends on cct }
\end{aligned}
$$



## Element Transformations contd

Controlled sources $\quad v_{1}(t)=\mu \nu_{2}(t) \Leftrightarrow V_{1}(s)=\mu V_{2}(s)$
$i_{1}(t)=\beta i_{2}(t) \quad \Leftrightarrow \quad I_{1}(s)=\beta I_{2}(s)$
$v_{1}(t)=r i_{2}(t) \quad \Leftrightarrow \quad V_{1}(s)=r I_{2}(s)$
$i_{1}(t)=g v_{2}(t) \quad \Leftrightarrow \quad I_{1}(s)=g V_{2}(s)$
Short cct, open cct, OpAmp relations

$$
\begin{aligned}
& v_{S C}(t)=0 \quad \Leftrightarrow \quad V_{S C}(s)=0 \\
& i_{O C}(t)=0 \quad \Leftrightarrow \quad I_{O C}(s)=0 \\
& v_{N}(t)=v_{P}(t) \quad \Leftrightarrow \quad V_{N}(s)=V_{P}(s)
\end{aligned}
$$

Sources and active devices behave identically Constraints expressed between transformed variables

This all hinges on uniqueness of Laplace Transforms and linearity

## Element Transformations contd

Resistors

$$
\begin{array}{ll}
v_{R}(t)=R i_{R}(t) & i_{R}(t)=G v_{R}(t) \\
V_{R}(s)=R I_{R}(s) & I_{R}(s)=G V_{R}(s)
\end{array}
$$



Capacitors

$$
\begin{array}{ll}
i_{C}(t)=C \frac{d v_{C}(t)}{d t} & v_{C}(t)=\frac{1}{C} \int_{0}^{t} i_{C}(\tau) d \tau+v_{C}(0) \\
I_{C}(s)=s C V_{C}(s)-C v_{C}(0-) & V_{C}(s)=\frac{1}{s C} I_{C}(s)+\frac{v_{C}(0)}{s}
\end{array}
$$

Inductors
$v_{L}(t)=L \frac{d i_{L}(t)}{d t} \quad i_{L}(t)=\frac{1}{L} \int_{0}^{t} v_{L}(\tau) d \tau+i_{L}(0)$
$V_{L}(s)=s L I_{L}(s)-L i_{L}(0) \quad I_{L}(s)=\frac{1}{s L} V_{L}(s)+\frac{i_{L}(0)}{s}$

$$
Z_{L}(s)=s L \quad Y_{L}(s)=\frac{1}{s L}
$$

## Element Transformations contd



$$
V_{R}(s)=R I_{R}(s)
$$

Capacitor


$$
I_{C}(s)=s C V_{C}(s)-C v_{C}(0-) \quad V_{C}(s)=\frac{1}{s C} I_{C}(s)+\frac{v_{C}(0)}{s}
$$



Note the source transformation rules apply!

## Element Transformations contd

Inductors

$$
V_{L}(s)=s L I_{L}(s)-L i_{L}(0) \quad I_{L}(s)=\frac{1}{s L} V_{L}(s)+\frac{i_{L}(0)}{s}
$$



## Example 10-1, T\&R, 5th ed, p 456

RC cct behavior
Switch in place since $t=-\infty$, closed at $t=0$. Solve for $v_{C}(t)$.


Initial conditions $\quad v_{C}(0)=V_{A}$
s-domain solution using nodal analysis

$$
I_{1}(s)=\frac{V_{C}(s)}{R} \quad I_{2}(s)=\frac{V_{C}(s)}{1 / s C}=s C V_{C}(s)
$$

t-domain solution via inverse Laplace transform

$$
V_{C}(s)=\frac{V_{A}}{s+\frac{1}{R C}} \quad v_{c}(t)=V_{A} e^{-t / R C_{u}(t)}
$$

## Example 10-2 T\&R, 5th ed, p 457

Solve for i(t)


KVL around loop $\frac{V_{A}}{s}-(R+s L) I(s)+L i_{L}(0)=0$
Solve

$$
I(s)=\frac{V_{A} / L}{s(s+R / L)}+\frac{i_{L}(0)}{s+R / L}=\frac{V_{A} / R}{s}+\frac{\left(i_{L}(0)-V_{A} / R\right)}{s+R / L}
$$

Invert $\quad i(t)=\left[\frac{V_{A}}{R}-\frac{V_{A}}{R} e^{-R t / L}+i_{L}(0) e^{-R t / L}\right] u(t) \mathrm{Amps}$

## Impedance and Admittance

Impedance ( $Z$ ) is the $s$-domain proportionality factor relating the transform of the voltage across a two-terminal element to the transform of the current through the element with all initial conditions zero

$$
V(s)=Z(s) I(s)
$$

Admittance $(\mathrm{Y})$ is the $s$-domain proportionality factor relating the transform of the current through a two-terminal element to the transform of the voltage across the element with initial conditions zero

$$
I(s)=Y(s) V(s)
$$

Impedance is like resistance
Admittance is like conductance

## Circuit Analysis in s-Domain

## Basic rules

The equivalent impedance $Z_{\text {eq }}(s)$ of two impedances $Z_{1}(s)$
and $Z_{2}(\mathrm{~s})$ in series is $Z_{e q}(s)=Z_{1}(s)+Z_{2}(s)$
Same current flows

$$
V(s)=Z_{1}(s) I(s)+Z_{2}(s) I(s)=Z_{e q}(s) I(s)
$$



The equivalent admittance $\mathrm{Y}_{\mathrm{eq}}(\mathrm{s})$ of two admittances $\mathrm{Y}_{1}(\mathrm{~s})$ and $\mathrm{Y}_{2}(\mathrm{~s})$ in parallel is $Y_{e q}(s)=Y_{1}(s)+Y_{2}(s)$

Same voltage

$$
I(s)=Y_{1}(s) V(s)+Y_{2}(s) V(s)=Y_{e q}(s) V(s)
$$



## Example 10-3 T\&R, 5th ed, p 461

Find $\mathrm{Z}_{\mathrm{AB}}(\mathrm{s})$ and then find $\mathrm{V}_{2}(\mathrm{~s})$ by voltage division


$$
\begin{gathered}
Z_{e q}(s)=s L+R \| \frac{1}{s C}=s L+\frac{1}{\frac{1}{R}+s C}=\frac{R L C s^{2}+L s+R}{R C s+1} \Omega \\
V_{2}(s)=\left[\frac{Z_{1}(s)}{Z_{e q}(s)}\right] V_{1}(s)=\left[\frac{R}{R L C s^{2}+s L+R}\right]
\end{gathered}
$$

## Example

Formulate node voltage equations in the $s$-domain


MAE40 Linear Circuits

## Example contd



Node A: $V_{A}(s)=V_{1}(s)$
Node D: $V_{D}(s)=\mu V_{x}(s)=\mu V_{C}(s)$

Node B: $\quad \frac{V_{B}(s)-V_{A}(s)}{R_{1}}+\frac{V_{B}(s)-V_{D}(s)}{R_{2}}+\frac{V_{B}(s)}{1 / s C_{1}}$
$+\frac{V_{B}(s)-V_{C}(s)}{1 / s C_{2}}-C_{1} v_{C 1}(0)-C_{2} v_{C 2}(0)=0$
Node C: $\quad-s C_{2} V_{B}(s)+\left[s C_{2}+G_{3}\right] V_{C}(s)=-C_{2} v_{C 2}(0)$

## Example

Find $v_{o}(t)$ when $v_{S}(t)$ is a unit step $u(t)$ and $v_{C}(0)=0$


Convert to s-domain


## Example

## Nodal Analysis

Node A: $V_{A}(s)=V_{S}(s)$
Node D: $V_{D}(s)=V_{O}(s)$
Node C: $V_{C}(s)=0$


Node B: $\left(G_{1}+s C\right) V_{B}(s)-G_{1} V_{S}(s)=C v_{C}(0)$
Node C KCL: $-s C V_{B}(s)-G_{2} V_{O}(s)=-C v_{C}(0)$
Solve for $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$

Invert LT

MAE40 Linear Circuits

$$
\begin{aligned}
& V_{O}(s)=-\left[\frac{s G_{1} C / G_{2}}{G_{1}+s C}\right] V_{S}(s)=-\left[\frac{R_{2}}{R_{1}} \times \frac{s}{s+1 / R_{1} C}\right] V_{S}(s) \\
& =-\left[\frac{R_{2}}{R_{1}} \times \frac{s}{s+1 / R_{1} C}\right] \frac{1}{s}=\frac{-R_{2}}{R_{1}} \times \frac{1}{s+1 / R_{1} C} \\
& v_{O}(t)=\frac{-R_{2}}{R_{1}} e^{-\frac{t}{R_{1} C}} u(t)
\end{aligned}
$$

## Superposition in s-domain ccts

The s-domain response of a cct can be found as the sum of two responses

1. The zero-input response caused by initial condition sources, with all external inputs turned off
2. The zero-state response caused by the external sources, with initial condition sources set to zero Linearity and superposition

Another subdivision of responses

1. Natural response - the general solution Response representing the natural modes (poles) of cct
2. Forced response - the particular solution

Response containing modes due to the input

## Example 10-6, T\&R, 5th ed, p 466

The switch has been open for a long time and is closed at $\mathrm{t}=0$.
Find the zero-state and zero-input components of $\mathrm{V}(\mathrm{s})$
Find $v(t)$ for $I_{A}=1 m A, L=2 H, R=1.5 K \Omega, C=1 / 6 \mu F$


MAE40 Linear Circuits


## Example 10-6 contd

$$
\begin{aligned}
& V_{z s}(s)=Z_{e q}(s) \frac{I_{A}}{s}=\frac{I_{A} / C}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}} \quad \frac{I_{A}}{s} \uparrow \\
& V_{z i}(s)=Z_{e q}(s) R C I_{A}=\frac{R I_{A} s}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}}
\end{aligned}
$$

Substitute values

$$
\begin{aligned}
& V_{z s}(s)=\frac{6000}{(s+1000)(s+3000)}=\frac{3}{s+1000}+\frac{-3}{s+3000} \\
& v_{z s}(t)=\left[3 e^{-1000 t}-3 e^{-3000 t}\right] u(t) \\
& V_{z i}(s)=\frac{1.5 s}{(s+1000)(s+3000)}=\frac{-0.75}{s+1000}+\frac{2.25}{s+3000} \\
& v_{z i}(t)=\left[-0.75 e^{-1000 t}+2.25 e^{-3000 t}\right] u(t)
\end{aligned}
$$

What are the natural and forced responses?

## Features of s-domain cct analysis

The response transform of a finite-dimensional, lumped-parameter linear cct with input being a sum of exponentials is a rational function and its inverse Laplace Transform is a sum of exponentials
The exponential modes are given by the poles of the response transform
Because the response is real, the poles are either real or occur in complex conjugate pairs
The natural modes are the zeros of the cct determinant and lead to the natural response
The forced poles are the poles of the input transform and lead to the forced response

## Features of s-domain cct analysis

A cct is stable if all of its poles are located in the open left half of the complex s-plane
A key property of a system
Stability: the natural response dies away as $\mathrm{t} \rightarrow \infty$
Bounded inputs yield bounded outputs
A cct composed of Rs, Cs and Ls will be at worst marginally stable
With Rs in the right place it will be stable $Z(s)$ and $Y(s)$ both have no poles in $\operatorname{Re}(s)>0$
Impedances/admittances of RLC ccts are "Positive Real" or energy dissipating

