1.- Part I

To use mode-voltage analysis, we must taille care of He presence of the voltage sorvce using one of the three methods discussed in class:

1) source transformation
2) grounding a mode conveniently
3) supernode

We cannot use 1) because it movies modifying the arwit, something that the question statement says we cannot do. Re 2), ground has already bern chosen, and not in a anvenient way t take care of the voltage source. Therefore, we here t use a sipernode. This supenode is the rent of combining nodes (C) and (D). $[+2$ prints]

The equation defining the syperwode is

$$
V_{C}-V_{D}=V_{S}
$$

$[t 0.5$ print $]$
Next, we write KCL for the syperwode

$$
G_{1}\left(V_{C}-V_{A}\right)+G_{2}\left(V_{D}-V_{B}\right)=0 \quad[+2 \text { point }]
$$

(where we are using $G_{i}=\frac{1}{R_{i}}$ for convenience) We also have to unite $K C L$ for nodes (A), (B), and (E) KCLA(A):

$$
G_{1}\left(V_{A}-V_{C}\right)+G_{4} V_{A}=0
$$

$$
\text { [+0.5 port }]
$$

$\operatorname{kCL} \otimes(B)$

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{KCL}(B) \\
G_{5} V_{B}+G_{3}\left(V_{B}-V_{E}\right)+G_{2}\left(V_{B}-V_{D}\right)=0 & {[+0.5 \text { print }]} \\
\operatorname{KCLD}(E) & {[+0.5 \text { point }]}
\end{array}
\end{array}
$$

With there, we have 5 offs in 5 unknowns $V_{A}, V_{B}, V_{C}, V_{D}, V_{E}$. In matrix form

$$
\begin{array}{ccccc}
\text { Tu matrix form } & \\
\left(\begin{array}{ccccc}
G_{1}+G_{4} & 0 & -G_{1} & 0 & 0 \\
0 & G_{2}+G_{3}+G_{5} & 0 & -G_{2} & -G_{3} \\
0 & 0 & 1 & -1 & 0 \\
-G_{1} & -G_{2} & G_{1} & G_{2} & 0 \\
0 & -G_{3} & 0 & 0 & G_{3}
\end{array}\right)\left(\begin{array}{c}
V_{A} \\
V_{B} \\
V_{C} \\
V_{D} \\
V_{E}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
V_{S} \\
0 \\
i
\end{array}\right) \text { pic }
\end{array}
$$

Part II
In terms of the node voltages, we hare

$$
\begin{array}{ll}
V_{x}=-V_{B} & {[+1 \text { point }]} \\
i_{x}=G_{4}\left(-V_{A}\right) & {[+1 \text { point }]}
\end{array}
$$

Part III
If source transformation wis allowed, we cold hove transformed the voltage sorrce (which is a problem for node voltage analysis) in series with R_{1} (or with l_{2}) into a current source in parallel with the corresponching resistor. This world also have decreased the nomber of modes by one, hence simplifying the setting up of the NV equations.
2. - Part I

We turn off all the suras in the arait and obtain the arait below

[+0.5 point]
where the voltage survice gets replaced fy a short circuit, and the current sorrce by an open arrant. [t0.5 point]
Next, we use association of resistors to simplify it further. Note that R_{1} and R_{2} are in series, so
$R_{1}+R_{2}$

[to.5 point]

Moreover, there is no current going through R_{3} (because of the open arasit), so it is as if that resistor was not there.

R_{4} and R_{5} are in series, 80 we simplify as

Finally, the two remaining resistors are in parallel, So

$$
\begin{array}{r}
R_{E 2}=\left(R_{1}+R_{2}\right) \|\left(R_{4}+R_{5}\right) \\
=\frac{\left(R_{1}+R_{2}\right) \cdot\left(R_{4}+R_{5}\right)}{R_{1}+R_{2}+R_{4}+R_{5}} \tag{o}\\
{[+0.5 \text { point }]}
\end{array}
$$

Pwt II
We turn off the voltage source, sobstitutiy it by a short cirant as

Since the resistor R_{3} is in series with a current source, from the point of views of the rest of the arnit (and, in particular, t compote the open arrant voltage), this is equimbent t

Now we observe that R_{1} and R_{2} are in series, so

Next, we use source transformation and torn the corrent source in parallel w/ R_{5} int a voltage source in series with R_{5}.

Finally, we see that the open anne village is the voltage drop seen by the resistor $R_{1}+R_{2}$, which can be computed by voltage division

$$
\left(V_{A B}\right)_{1}=V_{R_{1}+R_{2}}=\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{4}+R_{S}}\left(-R_{5} i_{S}\right)
$$

Pat III
We turn off the current source, substituting it by an open aranit as

R_{3} does not plan any role because of the lock of current going through it, so we redraw as

We see that the open arait voltage is the Som of the witage corps seen sy R_{4} and R_{5}. This we can find using voltage division

$$
\left(V_{A B}\right)_{2}=\frac{R_{4}+R_{5}}{R_{1}+R_{2}+R_{4}+R_{5}} V_{S} \quad[+1 \text { point }]
$$

Part IV
By superposition, the open circuit wite as seen from terminals (A) and (B) is the som of the ansuress of Part II (voltage sorce off) and Part IIT (current sirree off).

Therefore,

$$
\begin{aligned}
V_{T} & =V_{\partial C}=\left(V_{A B}\right)_{1}+\left(V_{A B}\right)_{2}= \\
& =\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{4}+R_{S}}\left(-R_{S} i_{S}\right)+\frac{R_{1}+R_{5}}{R_{1}+R_{2}+R_{4}+R_{S}} V_{S} \\
& =\frac{\left(R_{4}+R_{5}\right) V_{S}-\left(R_{1}+R_{2}\right) R_{5} i_{S}}{R_{1}+R_{2}+R_{4}+R_{S} \quad \text { [+0.5purit] }}
\end{aligned}
$$

From Part I,

$$
R_{T}=R_{E Q}=\frac{\left(R_{1}+R_{2}\right)\left(R_{4}+R_{5}\right)}{R_{1}+R_{2}+R_{4}+R_{5} \text { [to.5poutt] }}
$$

Therefore, the Thevecun equivalent is

Past V
The answer mould be the same if the resistor R_{3} was not present. This is because the current sorrce in series with that resistor is equinlent to the arrant source by itself. This is also apparent in the response for V_{T} and R_{T} given in Part IV, where the condretance G_{3} does not show up. [t 1 extra] point]

