1.- Part I

Looking at the ararit, we observe the presence of 2 current sorras, which are problems we need ts deal with t use mesh arrrent analysis.
One of them only belongs to one mush (method 2), but the other belongs to two, so we will use a sopormesh for it (method 3).
So, method 2 for the current source on the night yields

$$
i_{2}=-a v_{x}
$$

The supermest equation is

$$
i_{3}-i_{4}=i_{5}
$$

And KVL for the srgernesh reads

$$
R_{3}\left(i_{3}-i_{1}\right)+R_{4}\left(i_{4}-i_{2}\right)+R_{5} i_{4}=0 \quad[+1 \text { posit }]
$$

We also write KQL for mush 1 as

$$
R_{2}\left(i_{1}-i_{2}\right)+R_{3}\left(i_{1}-i_{3}\right)-V_{S}=0 \quad[+1 \text { prut }]
$$

Finally, we weed to account for the presence of a dependent source. Looking at the arait, we see that

$$
V_{x}=R_{3}\left(i_{3}-i_{1}\right)
$$

[+1 point]
Or discussion above yields a total of 5 eqs. in 5 ouknowns, $i_{1}, i_{2}, i_{3}, i_{4}, V_{x}$. [+1 point] In matrix form, this can be expressed as

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & a \\
0 & 0 & 1 & -1 & 0 \\
-R_{3} & -R_{4} & R_{3} & R_{4}+R_{5} & 0 \\
R_{2}+R_{3} & -R_{2} & -R_{3} & 0 & 0 \\
R_{3} & 0 & -R_{3} & 0 & 1
\end{array}\right)\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
V_{x}
\end{array}\right)=\left(\begin{array}{c}
0 \\
i_{S} \\
0 \\
V_{S} \\
0
\end{array}\right)
$$

Part II

$$
\begin{array}{ll}
V_{A}=V_{S} & {[+1 \text { point }]} \\
V_{B}=R_{1}\left(-i_{2}\right)+V_{A}=-R i_{2}+V_{S} & {[+1 \text { point }]} \\
V_{C}=R_{3}\left(i_{1}-i_{3}\right) & {[+1 \text { point }]} \\
V_{D}=R_{S} i_{4} & {[+1 \text { point }]}
\end{array}
$$

Part III
No, the mesh currents will not change. This is because the resister R_{1} is in series with a current source, and we knows that, from the point of views of the rest of the circuit, this is egrimbent δ the current source by itself. [$1+1$ expoint $]$ Another way to justify this is to realize that the value of R_{1} does not affect the equations in Part I.
2.-

Part I
As instructed, we use nodal analysis to figure out the output voltage.
We know $V_{A}=V_{S}$.
KCL at mode (B) (with $\left.i_{p}=0\right)$,

$$
\frac{1}{R_{1}}\left(V_{B}-V_{A}\right)+\frac{1}{R_{2}}\left(V_{B}-V_{0}\right)=0 \quad[+1 \text { point }]
$$

KCl at node (C) (with $i_{n}=0$),

$$
\frac{1}{R_{1}}\left(V_{c}-0\right)+\frac{1}{2 R_{2}}\left(V_{c}-V_{0}\right)=0 \quad[+1 \text { point }]
$$

Ideal auditions mean that

$$
V_{B}=V_{C} \quad[+2 \text { point }]
$$

We here 3 eds. in 3 unknowns V_{B}, V_{c}, V_{0}, so we can solve. From the $1^{\text {st t }} \mathrm{eq}$,

$$
\begin{aligned}
\frac{1}{R_{2}} V_{0} & =\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) V_{B}-\frac{1}{R_{1}} V_{S} \\
V_{0} & =\left(1+\frac{R_{2}}{R_{1}}\right) V_{B}-\frac{R_{2}}{R_{1}} V_{S}
\end{aligned}
$$

From the $2^{\text {nd }} \mathrm{f}$.,

$$
\begin{aligned}
\frac{1}{2 R_{2}} V_{0} & =\left(\frac{1}{R_{1}}+\frac{1}{2 R_{2}}\right) V_{C} \\
V_{0} & =\left(1+\frac{2 R_{2}}{R_{1}}\right) V_{C}
\end{aligned}
$$

Therefore

$$
\left(1+\frac{R_{2}}{R_{1}}\right) V_{B}-\frac{R_{2}}{R_{1}} V_{S}=\left(1+\frac{2 R_{2}}{R_{1}}\right) V_{B}
$$

Simplifying,

$$
-\frac{R_{2}}{R_{1}} V_{S}=\frac{R_{2}}{R_{1}} V_{B} \Rightarrow V_{B}=-V_{S}
$$

Therefore,

$$
V_{0}=-\left(1+\frac{2 R_{2}}{R_{1}}\right) V_{S} \quad[+1 \text { point }]
$$

And the correct answer is the last one.
Part II
With the valses provided, we have

$$
\begin{aligned}
-10 \leqslant & V_{0}=-(1+1) V_{S} \leqslant 20 \quad[+1 \text { point }] \\
-10 \leqslant & -2 V_{S} \leqslant 20 \\
5 & \geqslant V_{S} \geqslant-10
\end{aligned}
$$

So the input V_{s} unit be Sefwan -10 V and 5V for linear operation. [+1point]

Part III
Note that we can write

$$
V_{0}=-\left(1+\frac{2 R_{2}}{R_{1}}\right) V_{S}=(-1) \cdot\left(\frac{R_{1}+2 R_{2}}{R_{1}}\right) V_{S}
$$

This can be realized with a non-inverting op-amp and an inverting op-amp, as follows.

gain: $\frac{2 R_{2}+R_{1}}{R_{1}} \quad$ gain: $\frac{-R_{1}}{R_{1}}=-1$
Note that the inverting op-aup does not lad the non-inverting op-aup because of the zero output resistance of the latter. Therefore

$$
V_{0}=(-1) \cdot\left(\frac{2 R_{2}+R_{1}}{R_{1}}\right) V_{S}
$$

[+2 point $]$

