MAE140 - Linear Circuits - Fall 13
 Quick quiz on complex numbers

Instructions

(i) Recall that $a+b j=\sqrt{a^{2}+b^{2}} e^{j \arctan (b / a)}$
(ii) $|a+b j|=\sqrt{a^{2}+b^{2}}$ is the magnitude
(iii) $\angle(a+b j)=\arctan (b / a)$ is the phase
(iv) Recall Euler's formula is $e^{j \theta}=\cos \theta+j \sin \theta$

1. Compute the magnitude and phase of the complex numbers $1+j$ and $1-j$
2. Using your answer to Question 1, compute the magnitude and phase of

$$
\frac{1+j}{1-j}
$$

3. Match the numbers in the first column with the numbers in the second one

$$
\begin{aligned}
j & e^{-j \pi} \\
-1 & e^{j \frac{\pi}{6}} \\
\frac{\sqrt{3}}{2}+\frac{j}{2} & e^{j \frac{\pi}{2}}
\end{aligned}
$$

