1. Part I

Under DC excitations, we know the capacitor behaves as an open ciren't and the indvetor behares as a short arait. Therefore we have

[+1 extrn poont]

This arait is equivalert to

Therefore, we anclude that and $V_{C}(0)=0$.

$$
i_{L}(0)=-\frac{V_{i}}{R_{1}}
$$ [to.5 extra poont]

PartII
We redraw the arart in the s-doman, using a corrent soorce to accont for the mitial andition of the inductior.

or equivaleutly

2.- Part I

We transform the arait int the S-domann, using a voltage source to represent the nihil condition of the inductor.

Part II
We use the node labels provided in the plot afore. Dight away, we have that

$$
\begin{array}{ll}
V_{C}=L_{a} ; & V_{D}
\end{array}=V_{i}(s)
$$

Because of ideal op-amp conditions, we have

$$
V_{A}=V_{B}
$$

[$+0,5$ point]
KCL a wide (A) gives

$$
\frac{1}{2 R} V_{A}+\frac{1}{R}\left(V_{A}-V_{0}(s)\right)=0 \quad[+0,5 \text { point }]
$$

KCL a ide (B) gives

$$
\frac{1}{S L}\left(V_{B}-V_{C}\right)+\frac{1}{R}\left(V_{B}-V_{D}\right)+\frac{1}{R}\left(V_{B}-V_{\partial}\right)=0
$$

This gives us a total of 5 eqss in 5 unknowns

$$
V_{A}, V_{B}, V_{C}, V_{D}, V_{0}
$$

[$+0,5$ point]
From the 4th equation, we obtain

$$
V_{0}(s)=\frac{3}{2} V_{A}
$$

substituting into the last equation, we get

$$
\frac{1}{S L}\left(V_{A}-L i_{a}\right)+\frac{1}{R}\left(V_{A}-V_{i}(s)\right)+\frac{1}{R}\left(V_{A}-\frac{3}{2} V_{A}\right)=0
$$

slaving for V_{A}, we get

$$
-\frac{1}{2} V_{A}
$$

$$
\begin{aligned}
& \left(\frac{1}{s L}+\frac{1}{R}-\frac{1}{2 R}\right) V_{A}=\frac{1}{s L} L i_{a}+\frac{1}{R} V_{i}(s) \\
& \left(\frac{1}{s L}+\frac{1}{2 R}\right) V_{A}=\frac{i a}{s}+\frac{V_{i}(s)}{R} \\
& \frac{2 R+s L}{2 R L S} V_{A} \Rightarrow \\
& V_{A}(s)=\frac{2 R L s}{2 R+s L}\left(\frac{i a}{s}+\frac{V_{c}(s)}{R}\right)
\end{aligned}
$$

Therefre

$$
\begin{aligned}
& V_{0}(s)= \frac{3 R L}{2 R+s L}\left(i_{a}+\frac{s}{R} V_{i}(s)\right)= \\
&= \frac{3 L}{2 R+\delta L}\left(R i_{a}+\delta V_{i}(s)\right) \\
& \quad[+1 \text { pint }]
\end{aligned}
$$

Part III
Substituting the values provided, we get

$$
\begin{aligned}
V_{0}(s) & =\frac{3\left(R i_{a}+s V_{i}(s)\right)}{\frac{2 R}{L}+s}=\frac{3\left(10 \cdot 2 \cdot 10^{-1}+s \cdot \frac{1}{s^{2}}\right)}{s+\frac{2 \cdot 10}{10^{-2}}}= \\
& =\frac{3\left(2+\frac{1}{s}\right)}{s+2000}=\frac{6}{s+2000}+\frac{3}{(s+2000) s} \\
& =\frac{6}{s+2000}+\frac{A}{s+2000}+\frac{B}{S}
\end{aligned}
$$

We use the residue method t find

$$
\begin{aligned}
& A=\lim _{s \rightarrow-2000} \frac{(s+2000) \cdot \frac{3}{(s+2000) s}=-\frac{3}{2000}}{B=\lim _{s \rightarrow 0} \& \cdot \frac{3}{(s+2000) \&}=\frac{3}{2000}}
\end{aligned}
$$

Therefore

$$
V_{0}(s)=\frac{6}{s+2000}-\frac{3 / 2000}{s+2000}+\frac{3 / 2000}{s+1 \text { point }]}
$$

Falling inverse Laplace transform, wee obtain

$$
\begin{aligned}
& V_{0}(t)=\left(\left(6-\frac{3}{2000}\right) \cdot e^{-2000 t}+\frac{3}{2000}\right) u(t) \\
&=\left(\frac{11997}{2000} e^{-2000 t}+\frac{3}{2000}\right) u(t) \\
& {[+1 \text { point }] }
\end{aligned}
$$

Part IV
The import is $V_{i}(t)=t u(t)$, which has two poles at zero. Therefure, the forced response is

$$
V_{f r}(t)=\frac{3}{2000} u(t) \quad[+0.5 \text { point }]
$$

and the nature response is

$$
V_{u r}(t)=\frac{11997}{2000} e^{-2000 t} u(t) \quad \text { [+0.5 point] }
$$

(as expected, the natural response alcurst inmedatebecomes zero)

The zero-state response is obtained by zeroing the initial condition i_{a} of the inolvithr.

$$
\begin{aligned}
& V_{\text {ozs }}(s)=-\frac{3}{2000} \frac{1}{s+2000}+\frac{3}{2000} \cdot \frac{1}{s} \\
& V_{\text {ozs }}(t)=\left(-\frac{3}{2000} e^{-2000 t}+\frac{3}{2000}\right) u(t)\left[\begin{array}{l}
{[0.5} \\
\text { point }]
\end{array}\right]
\end{aligned}
$$

The zero-inpout response is obscured by zeroing the input $v_{i}(t)$,

$$
\begin{aligned}
& V_{0 z i}(s)=6 \cdot \frac{1}{s+2000} \\
& V_{0 z i}(t)=6 \cdot e^{-2000 t} u(t)
\end{aligned}
$$

$[+0.5$ point]
3.. Part I For arait 1, we hove

We see that the arait is inverting the input, and scaling it down by $1 / 2$. So this must be an inverting op-amp, with gean $-\frac{1}{2}$ 。

We see that the arait is scaling down the input by a factor of $\frac{1}{2}$, respecting the polarity. This inst be a voltage chider, with gain 1/2.
(eng.)

Finally, for arrant 3 we have

The arait respects the probity, and amplifies the input by a feretur of 2, so this must be a mon-inverting_op-amp, with gan n 2. (e.8.1

[ty point]

Part II

There is no lading (because of both the O-oufpot impedance of crrnit 1 and the ∞-mprot impedance of arnit 3), so

$$
T(s)=T_{1}(s) \cdot T_{3}(s)=-\frac{1}{2} \cdot 2=-1 \quad\left[\begin{array}{c}
+0.5 \\
\text { point }]
\end{array}\right.
$$

Therefore, the steady-stete response of the convection in series is

[+2pont]

The order in which the araits are connected does not matter (there is no lading in either case). [+0.50int]

Part III

There is no loading (because of the so-inpot impedance of arrant 3), so

$$
T(s)=T_{2}(s) \cdot T_{3}(s)=\frac{1}{2} \cdot 2=1\left[\begin{array}{c}
{[0.5} \\
\text { pond }]
\end{array}\right.
$$

Therefore, the steady-state response of the connection in series is

[+1pont]

The order in which the ciraits are connected does not water (there is no landing if we connect [C3-[2]-, because of the 0-ortport ingedarne of arrant 3) [+0.5 \quad ont $]$

Part II

There is no loading (because of the 0-0utport impedance of arait 1), 80

$$
T(s)=T_{1}(s) \cdot T_{2}(s)=-\frac{1}{2} \cdot \frac{1}{2}=-\frac{1}{4}\left[\begin{array}{l}
{[0.5} \\
\text { (o nit }
\end{array}\right]
$$

Therefore, the steady-state response of the connection in series is

The order in which he araits are connected does matter - if we change the order, there would be lading.

Part I

The presence of the non-iwrerting op-aup in between the divider and the inverting opaup wakes sure thant there is no brainy. Theefre,

$$
\left.\begin{array}{rlr}
T(s) & =T_{2}(s) \cdot T_{3}(s) \cdot T_{1}(s)= \\
& =\frac{1}{2} \cdot 2 \cdot\left(-\frac{1}{2}\right)=-\frac{1}{2} & {[+1 \text { expo }}
\end{array}\right]
$$

Therefore, the steady-stete response of the connection in series is

$[11$ extra pout]
4.. Part I

To comprte the gain and phase foretion, we embate the trunsfer frietion at $s=j \omega$,

$$
\begin{aligned}
T(j \omega) & =-\frac{-10 \omega^{2}+2000 j w+10^{6}}{-\omega^{2}+1100 j \omega+10^{5}}= \\
& =-\frac{\left(10^{6}-10 \omega^{2}\right)+(2000 w) j}{\left(10^{5}-\omega^{2}\right)+(1100 w) j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefue } \\
& |T(j \omega)|=\frac{\sqrt{\left(10^{6}-10 \omega^{2}\right)^{2}+2000^{2} \omega^{2}}}{\sqrt{\left(10^{5}-\omega^{2}\right)^{2}+1100^{2} \omega^{2}}} \text { [+1 point] } \\
& \angle T(j \omega)=\arctan \frac{2000 \omega}{10^{6}-10 \omega^{2}}-\arctan \frac{1100 \omega}{10^{5}-\omega^{2}}
\end{aligned}
$$

(when computy andes vemember [+1 point]
Part II this conergorods $t_{\left.-\left(10=10 w^{2}\right) \text { - } 2000 \text { onj }\right)}$

$$
\begin{aligned}
& |T(j 0)|=\frac{\sqrt{\left(10^{6}\right)^{2}}}{\sqrt{\left(10^{5}\right)^{2}}}=\frac{10^{6}}{10^{5}}=10 \quad[+0.5 \text { point }] \\
& |T(j \infty)|=\lim _{\omega \rightarrow \infty}|T /(j \omega)|=\lim _{\omega \rightarrow \infty} \frac{\sqrt{100 \omega^{4}}}{\sqrt{\omega^{4}}}=10 \\
& {[+0.5 p 01 n t]}
\end{aligned}
$$

$$
\begin{array}{ll}
\langle T(j 0)=\pi-0=\pi & {[0.5 \text { point }]} \\
\langle T / j 0)=2 \pi-\pi=\pi & {[10.5 \text { point }]}
\end{array}
$$

To compute the cutoff fregrecucies, we have ts compote the maximum salve of the gan function.

$$
\begin{aligned}
|T(j w)| & =\sqrt{\frac{\left(10^{6}-10 w^{2}\right)^{2}+2000^{2} w^{2}}{\left(10^{5}-w^{2}\right)^{2}+1100^{2} w^{2}}}= \\
& =\sqrt{\frac{10^{12}+100 w^{4}-2 \cdot 10^{7} w^{2}+4 \cdot 10^{6} w^{2}}{10^{10}+w^{4}-2 \cdot 10^{5} w^{2}+12 \cdot 1 \cdot 10^{5} w^{2}}} \\
& =\sqrt{\frac{10^{12}+100 w^{4}-16 \cdot 10^{6} w^{2}}{10^{10}+w^{4}+10 \cdot 1 \cdot 10^{5} w^{2}}}
\end{aligned}
$$

Thankfully, they provide us with the maximum sake,

$$
T_{\text {max }}=10
$$

Therefore, the cutoff frequencies are ford by solving

$$
\begin{gathered}
\frac{\left|T\left(j w_{c}\right)\right|}{11}=\frac{T_{\text {max }}}{\sqrt{2}}
\end{gathered}=\frac{10}{\sqrt{2}}
$$

$$
=\frac{133 \cdot 10^{4} \pm 10^{4} \cdot \sqrt{17289}}{2}=\left\{\begin{array}{l}
1322438 \cdot 10^{4} \\
0.7561 \cdot 10^{4}
\end{array}\right.
$$

Therefore

Part III
米 $\omega \ll 1,|T(j \omega)| \approx \sqrt{\frac{10^{12}}{10^{10}}}=10$
For $\omega \gg 1,|\pi(j \omega)|=\sqrt{\frac{100 \omega^{4}}{\omega^{4}}}=10$
Sleetchs can be done in linear or logarithmic scale.

This is a bandshp_filter. [+1 port]

Part IV
The three ingots only differ in their frequencies.
We have

$$
\begin{aligned}
|T(j 250)| \simeq 2.25 & \langle T(j 250) \simeq 2.63 \mathrm{ad} \\
|T(j 300)| \simeq 1.84 & \langle T j 300) \simeq 3.00 \mathrm{ad} \\
|T(j 350)| \simeq 1.90 & <T(j 350)=3.39 \mathrm{ad} \\
& {[+1 \text { point }] }
\end{aligned}
$$

Therefore, the steady-state responses are

$$
\begin{aligned}
& V_{01}^{s s}(t)=A .2 .25 \cos (250 t+\phi+2.63) \\
& V_{02}^{s s}(t)=A .1 .84 \cos (300 t+\phi+3.00) \\
& V_{03}^{s s}(t)=A .1 .90 \cos (350 t+\phi+3.39)[+1 \text { pons } t]
\end{aligned}
$$

Yes, the transfer function reasonesly accomplished the engineer's goal. This is because all spreads with fregpencies in the range $250-350 \mathrm{pd} / \mathrm{s}$ (the ones used by the transmitter) fall int the strpband, with gains of arvind 2 . Fustead, the passbend gan k is 10. This means that the interference was greatly reduced for the indio receiver.
[+1 point]
5.- Part I

We find the poles of the transfer friction

$$
\left.s=\frac{\begin{array}{c}
s^{2}+1100 s+10^{5}=0
\end{array}}{s}=\frac{-1700 \pm \sqrt{1100^{2}-4 \cdot 10^{5}}}{2}=\frac{-1100 \pm 900}{2}=\right\}_{-1000}^{-100}
$$

Therefore, we can write [+1 pone]

$$
\begin{aligned}
T(s) & =\frac{-k_{1} s}{s+1000}+\frac{-k_{2}}{s+100}= \\
& =\frac{-k_{1} s^{2}-\alpha_{1} 100 s-k_{1} \alpha_{2} s-k_{2} 1000}{s^{2}+1100 s+10^{5}}
\end{aligned}
$$

Since demoninatire are the same, nomeatore have t se two. Therefore, equating coefficients,

$$
\begin{aligned}
& k_{1}=10 \\
& 100 k_{1}+k_{2}=2000 \Rightarrow k_{2}=1000[+1 \\
& \left.k_{2} 1000=10^{6} \quad \longleftrightarrow \text { point }\right]
\end{aligned}
$$

So we fugally unite

$$
T(s)=-\frac{10 s^{2}+2000 s+10^{6}}{s^{2}+1100 s+10^{5}}=-\frac{10 s}{s+1000}-\frac{1000}{s+100}
$$

pat II

$$
\left.\begin{array}{l}
T_{1}(\delta)=\frac{-10 s}{s+2000}=\frac{-10}{1+\frac{10^{3}}{s}}=\frac{-10^{3}}{10^{2}+\frac{1}{s 10^{-5}}} \\
{[+1 \text { point }}
\end{array}\right] \begin{aligned}
& \frac{1 / 80^{-6}}{10^{3}+\frac{1}{s .10^{-5}}}
\end{aligned}
$$

$[+2$ point $]$
We design araits using inverting op amps. For $T_{1}(s)$, we use

For $T_{2}(s)$, we use

Pat III
Since $T(s)$ is the som of $T_{1}(s)$ and $T_{2}(s)$, we consing the two arccite in Port II in probed to design

With this design, we have $T(s)=T_{1}(s)+T_{2}(s)$.

Pat iv
If we connect the ciraite in series,

Then the resulting tomusfer function is

$$
T_{\text {series }}(s)=T_{1}(s) \cdot T_{2}(s)
$$

(Note that there is no lading because of the zero-output impedance of the op-amp). [+1point] This connection in series results in a filter with no passband. This is because $T_{1}(s)$ is a high-pass filter w/ cot-off freq $\omega_{1}=\alpha_{1}=1000 \mathrm{dd} / \mathrm{s}$ and $T_{2}(\mathrm{~s})$ is a low-pass fitter $\omega)$ att-off freq $\omega_{2}=\alpha_{2}=100 \mathrm{rd} / \mathrm{s}$. If he combine them in painitel (as in Part III), they give rise A the bandstop filter of Q4. But if we combine them in series, as in this Part N, there no frequency passed through. stipland of high-pass fitter

So there is no passband.

