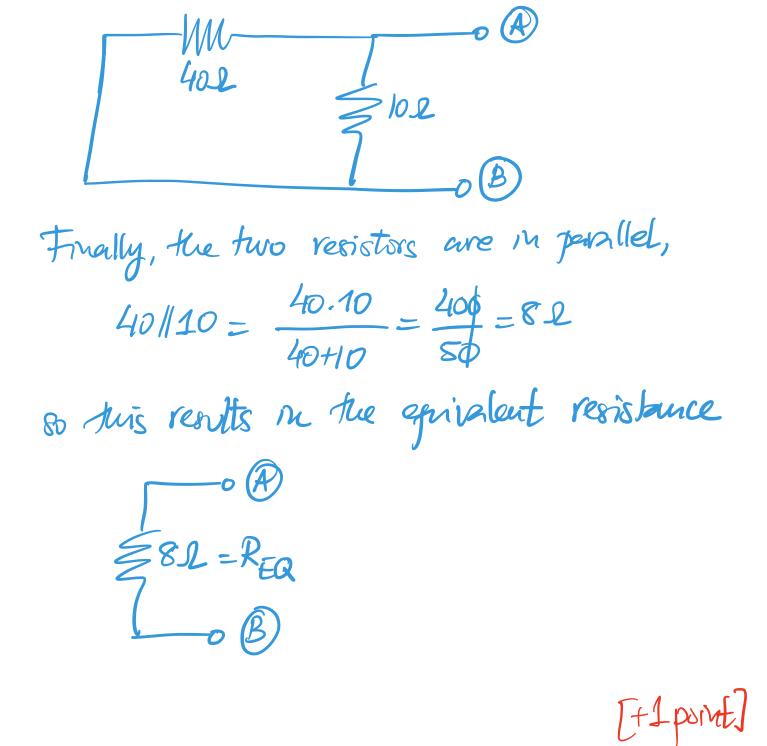
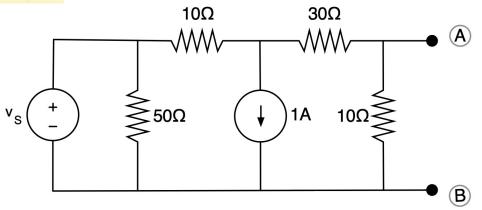
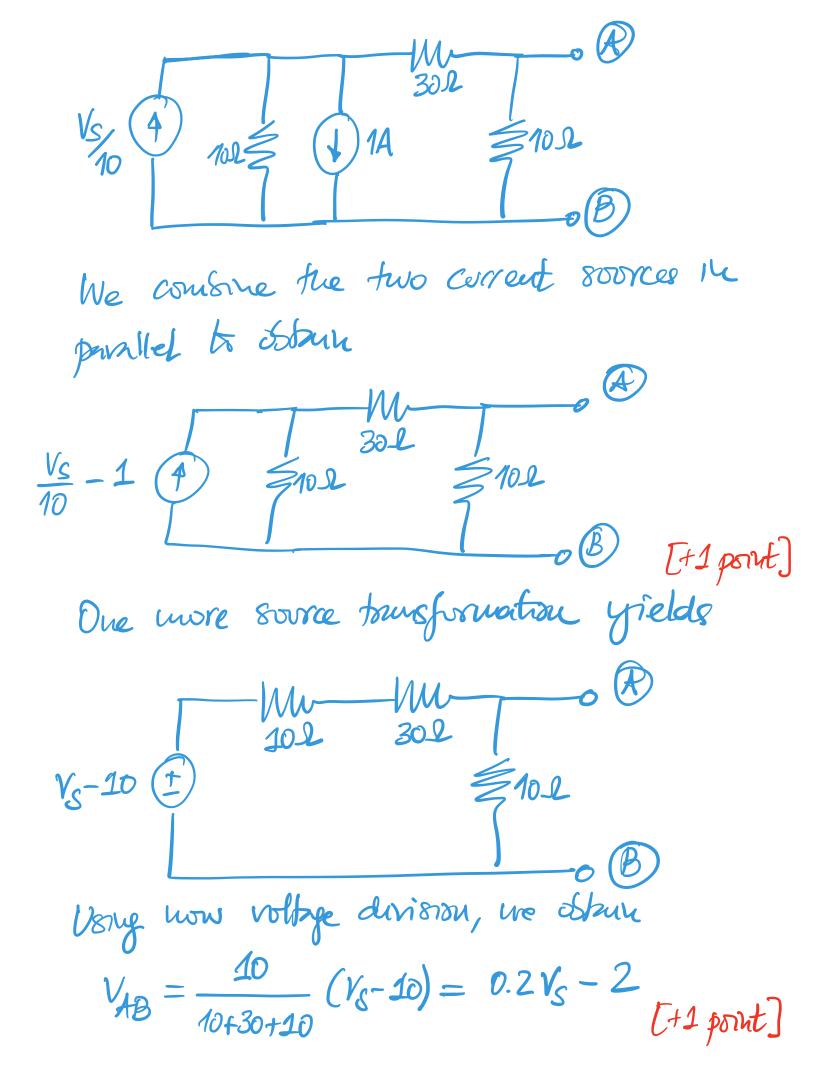

4._ Part I


We from off the source in the avail and Solur the avait below


where the current source gets replaced Sy an open avail and the voltage source by a dond circuit. Next, we use association of resistors to find the equivalent resistance. Note that the SOL resistor is in parallel with a OLL resistor, so we can instead draw

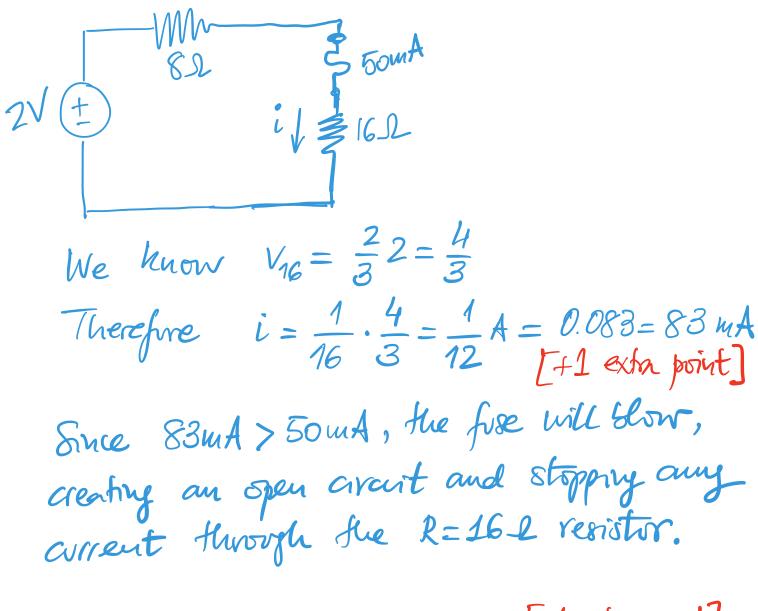
We consure the two resistors in series to get the plot



We are hold to compute the open-ciralit Woltage as seen from terminals (A) (B). We first note that the voltage source is in penallel w/ a Sole reporter, and from what we love discord in dows re: source transformations, we know this is equivalent to

Vs = 11A = 102 Vs = 11A = 102 0 [+1 point] Since the voltage source is in series up a

resistor, we can equivalently draw

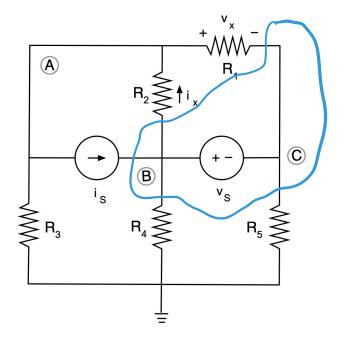


From Parts I&II, we know the Therem equiplent of our circuit [+1 pont] Therefore, if we connect a R= 16-2 resistor to terminals (A, B, we get $02V_{5}2 (\pm) (162) (16$ $\begin{aligned} &=\frac{2}{3}(0.2V_{S}-2)=\frac{4}{3}(0.1V_{S}-1)\\ &=\frac{1}{3}\left[1+1\right]\\ &=\frac{1}{7}\cdot V_{16}^{2}=\frac{1}{16}\cdot \frac{16}{9}\left(0.1V_{S}-1\right)^{2}=\frac{1}{9}\left[\frac{1}{9}\left[1+1\right]\right]\\ &=\frac{1}{9}\left[\frac{1}{9}\left(1+1\right)\right]\\ &=\frac{1}{9}\left$ Hence, $0.1 V_{\rm S} - 1 = 1$ $(0.1V_{S}-1)^{2}=1$ 4=0 $0.1v_{s} + 1 = 1 < D = 0V_{s} = 0V$ this one reled out because of

Part IV

Connecting a fuse and a resistor in series results in

[+1 extra point]


2. - Part I

To use mode-voltage analysis, we must take care of the presence of the voltage source vory one of the three hrethods discussed in days:

- 1) source transformation
- 2) groondrig à mode conveniently

3) apernode We cannot use 1) because the voltage pource is not in series with a resistor (even if it was, the striement of the greation explicitly roles out undifying the arrit, which also discards surre toursformation). 2) cannot be used either, because the ground node (which has already been clusen) is not placed conveniently. So we are left with method 3), where we contorne hodes (B) and (into a spernode.

[+2 prints]

The equation for the systemade is

$$V_{B} - V_{C} = V_{S} \qquad [+1 \text{ print}]$$
Next, we write KCL for the supermode,

$$G_{1}(V_{C} - V_{A}) + G_{2}(V_{B} - V_{A}) + G_{4}V_{B} + G_{5}V_{C} = i_{S} [+1 \text{ print}]$$
(Here, we have used the shorthand motition

$$G_{i} = \frac{1}{R_{i}}).$$
Next, we write KCL for mode \mathbb{A} ,

$$G_{1}(V_{A} - V_{C}) + G_{2}(V_{A} - V_{B}) + G_{3}V_{A} = -i_{S} [+1 \text{ print}]$$
The matrix form, we have

$$\begin{pmatrix} 0 & 1 & -1 \\ G_{1} - G_{2} & G_{2} + G_{4} & G_{1} + G_{5} \\ G_{4} + G_{4} + G_{3} - G_{2} & -G_{4} \\ \end{pmatrix} \begin{pmatrix} V_{A} \\ V_{B} \\ V_{C} \end{pmatrix} = \begin{pmatrix} V_{S} \\ i_{S} \\ -i_{S} \\ V_{C} \end{pmatrix} = This gives 3 equations in 3 unknowns.$$

The terms of the mode voltages, we have $V_x = V_A - V_C$ [+1 point] $i_x = G_2(V_B - V_A)$ [+1 point]

Part III Yes, choosing node B or node C) as ground is a setter durice than choosing it at (A). This is because the presence of the vollage source Vs is a "proslein" to set up modevoltige équations. In part I, we dealt with it vorg a superiode (de the problem statement rules out modifying the lasels). But if we arold choose ground at node C, notead, then $V_c = 0$ and $V_B = V_S$, and we world only need to write 2 KCL equitions, one for mode @ and another for the bottom mode. A similar argument can be made if grund is chosen at unde B. However, choosing groud at uscle A does not help with the "problem" at all. [+2 points]