1. Part I

Looking at the circuit, we observe the presence of 1 correct source, which is a problem we need to deal with to use mesh arrent analysis.

Since the correct source belongs to two meshes (and we count modify the circuit), we have to use a supermet. We set [+1 point] $i_2 - i_1 = ai_2$ Next, we write KVL for the supermeth, $V_S + R_4(i_2 - i_3) + R_2i_2 + R_4i_1 = 0$ [+1 point]

The other KVL we need to write is the one for the wesh on the right,

 $R_5(i_3) + R_4(i_3-i_2) - V_S = 0$

[+1 point]

Finally, we used to account for the presence of the dependent source, howling at the circuit, we see that

 $i_{x} = -i_{3}$ [+1 point]

This gives a total of 4 egs in 4 onknowns. Substituting the least equation but the first, he get

he get $-i_1 + i_2 + ai_3 = 0$

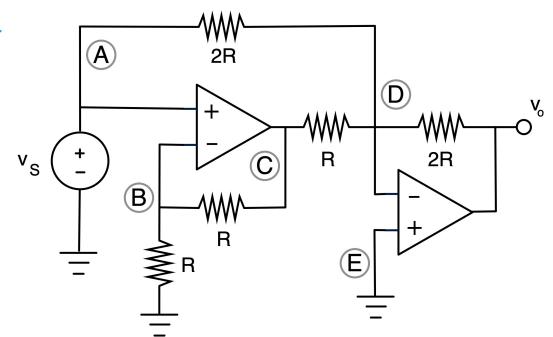
In matrix form,

$$\begin{pmatrix}
-1 & 1 & a \\
R_1 & R_2 + R_4 & -R_4 \\
0 & -R_4 & R_4 + R_5
\end{pmatrix} \begin{pmatrix}
i_1 \\
i_2 \\
i_3
\end{pmatrix} = \begin{pmatrix}
0 \\
-V_S \\
V_S
\end{pmatrix}$$
[+1 point]

Part I

From looking at the avanit, we obtain $V_1 = R_1 i_1$ [+1 point]

[+1 point]


 $V_3 = R_3(i_2 - i_1)$

Part II

Changing the value of resistor R_3 will not change /a ffect the mesh correct.

This is because R_3 is in series with a correct source, and we know from a veriet equivalence that a correct source of series w/ a resistor is quivalent to just the correct source. This can also be seen on the equations obtained in Pert I, where R_3 does not show up, indicating that its value does not affect i_1, i_2, i_3 .

[+2 points]

Part I

As instructed, we use wodal analysis to figure out the output voltage.

We know $V_A = V_S$.

[+1 point]

KCL at node \hat{B} gives us (with $i_n = 0$)

$$\frac{1}{R}\left(V_{B}-O\right)+\frac{1}{R}\left(V_{B}-V_{C}\right)=O$$

KCL at usde (D) (with in=0),

$$\frac{1}{R}(V_D-V_C)+\frac{1}{2R}(V_D-V_A)+\frac{1}{2R}(V_D-V_0)=0$$
 [+1 point]

Ideal anditions mean that

$$V_A = V_B \mathcal{X} \qquad V_D = V_E = 0$$

$$V_D = V_E = 0$$

[+2 points]

From KCL &B, we get $V_C = 2V_B = 2V_A = 2V_S$ $\frac{1}{R}V_C = \frac{2}{R}V_B = D$ From KCL DD, we get $\frac{1}{2R}V_0 = -\frac{1}{R}V_C - \frac{1}{2R}V_A \Longrightarrow$ $V_0 = -2 \cdot (2V_S) - V_S = -5V_S$ Therefore, $V_0 = -5V_S$ [+1 point] Part I With $V_{cc}=\pm 12V$, when we imput $V_{s}=3V$, the 2nd sp-amp gets saturated (8 nce -5.3=-15<-12) and house Vo=-12V. This is the voltage drop that the land resistor sees, and hence $P_{L} = \frac{1}{R_{I}} V_{o}^{2} = \frac{1}{10} \cdot 12^{2} = 14.4 \text{ W}$ [71] Which explains what the engineer found.

Part II Since we want to generate $V_0 = -5V_S$, we ve an inverting op-ours. $V_0 = -\frac{5R}{R}V_S = -5V_S$ [+1 point for very inverting op-amp, +1 point for correct design (other designs are preside) Part IV We also use an muesting opamp, but now resistors. only w/ 2R [+2 extra prints] (ofler designs are possible)