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Abstract

This paper tackles the data-driven approximation of unknown dynamical systems using Koopman-operator methods. Given
a dictionary of functions, these methods approximate the projection of the action of the operator on the finite-dimensional
subspace spanned by the dictionary. We propose the Tunable Symmetric Subspace Decomposition algorithm to refine the
dictionary, balancing its expressiveness and accuracy. Expressiveness corresponds to the ability of the dictionary to describe
the evolution of as many observables as possible and accuracy corresponds to the ability to correctly predict their evolution.
Based on the observation that Koopman-invariant subspaces give rise to exact predictions, we reason that prediction accuracy
is a function of the degree of invariance of the subspace generated by the dictionary and provide a data-driven measure to
measure invariance proximity. The proposed algorithm iteratively prunes the initial functional space to identify a refined
dictionary of functions that satisfies the desired level of accuracy while retaining as much of the original expressiveness as
possible. We provide a full characterization of the algorithm properties and show that it generalizes both Extended Dynamic
Mode Decomposition and Symmetric Subspace Decomposition. Simulations on planar systems show the effectiveness of the
proposed methods in producing Koopman approximations of tunable accuracy that capture relevant information about the
dynamical system.

1 Introduction

Progress in data acquisition and labeling, along with
widespread access to high-performance computing capabili-
ties for storing, processing, and data analysis, has resulted in
a surge of activity in learning and modeling of dynamical phe-
nomena across multiple domains. In this context, the impor-
tance of identification techniques that yield tractable repre-
sentations of nonlinear dynamics rooted at a solid theoretical
framework cannot be overemphasized. One such technique is
Koopman operator theory which, instead of prescribing the
evolution of system trajectories as state-space models do, de-
scribes the evolution of functions defined over the state space
(a.k.a. observables). The infinite-dimensional nature of the
operator has prevented its widespread use due to the lack of
computational methods to represent it. Extended dynamic
mode decomposition (EDMD) addresses this by employing
data from the dynamics to approximate the projection of
the action of the Koopman operator on a finite-dimensional
subspace spanned by a predefined dictionary of functions.

Despite EDMD’s success, it is still not well understood how
to choose dictionaries that both capture relevant information
about the dynamics and are able to accurately predict its
evolution. Prediction accuracy is related to the degree of in-
variance, with respect to the operator, of the subspace gener-
ated by the dictionary and, in fact, can be improved by selec-
tively pruning its functions. Such process, however, impacts
expressiveness, understood as the ability of the dictionary
to describe the evolution of as many observables as possible.
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Control Conference as [12].

This paper is motivated by the need to address the accuracy-
expressiveness trade-off in dictionary selection.

Literature Review: Given a dynamical system, its associated
Koopman operator [19, 20] is a linear operator characteriz-
ing the effect of the dynamics on functions in a (generally
infinite-dimensional) linear functional space. The values of
its eigenfunctions also evolve linearly in time on the trajec-
tories of the system. These properties enable the use of the
spectral properties of the operator to process data from dy-
namical systems using efficient linear algebraic methods fully
compatible with the arithmetic operations of digital comput-
ers [5, 31]. This has led to many applications in fluid dynam-
ics [36], model reduction [31], and control, including controller
synthesis [6, 9, 10], model predictive control [21, 38], control
of PDEs [35], and robotic applications [26, 45].

The infinite-dimensional nature of the Koopman operator is
an impediment to its direct implementation on digital com-
puters. A popular way to find finite-dimensional representa-
tions of the operator is through Dynamic Mode Decomposi-
tion (DMD) and its variants, initially developed to extract
dynamical information from data about fluid flows [37, 41].
[42] developed the Extended Dynamic Mode Decomposition
(EDMD) algorithm, a variant of DMD capable of approxi-
mating the projection of the action of the Koopman operator
from data on a finite-dimensional space spanned by a cho-
sen dictionary of functions. [22] formally established the con-
vergence of the EDMD approximation to the projection of
the action of the operator on the span of the dictionary. Re-
cently, [24] analyzed the accuracy of long-term prediction by
DMD and its variants. [27] used a Taylor expansion method
to enrich the dictionary for EDMD to achieve lower errors
in long-term predictions. [44] used finite element methods to
learn Koopman approximations with accuracy bounds quan-
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tifying their quality. This work also provided a variant of
EDMD to learn the Koopman generator combined with finite
element methods. [32] provided several probabilistic bounds
for approximation of the Koopman operator based on the
availability of only finitely many data points both for deter-
ministic and stochastic systems. It is worth mentioning that
(E)DMD captures valuable information about stochastic dy-
namical systems [18, 42]; however, it is sensitive to the exis-
tence of measurement noise in the available data. [8] and [11]
provide methods to deal with measurement noise in data for
DMD and EDMD, respectively.

In general, given an arbitrary dictionary, there is no guaran-
tee that EDMD provides an accurate approximation for all
the observables in the span of the dictionary. This has re-
sulted in the search for dictionaries that span invariant sub-
spaces [3] under the Koopman operator, on which the EDMD
approximation is exact. The work [15] introduces a class of
logistic functions to approximate Koopman-invariant sub-
spaces for systems whose dynamics are known. On the other
hand, given unknown systems and using data sampled from
their trajectories, Koopman-invariant subspaces are approx-
imated using neural networks in [25, 33, 39, 43] and sparsity-
promoting methods in [34]. The works by [16, 23] directly
approximate Koopman eigenfunctions, which naturally span
Koopman-invariant subspaces. These data-driven methods
do not provide theoretical guarantees for the resulting ap-
proximations. Given the importance of such guarantees, our
previous work [13, 14] has provided necessary and almost
surely sufficient conditions for the identification of the max-
imal Koopman-invariant subspace and all Koopman eigen-
functions in an arbitrary finite-dimensional functional space.
We have also provided approximations to identify subspaces
that are close to being invariant for cases when the maximal
Koopman-invariant subspace does not capture enough infor-
mation about the dynamics.

It is important to note that the existence of finite-dimensional
Koopman-invariant subspaces containing the states of the
system is not guaranteed [3]. However, invariant subspaces
still contain Koopman eigenfunctions, and can capture rele-
vant information about the vector field, physical constraints,
conservation laws, stability, and even the construction of Lya-
punov functions, see e.g., [30]. Nonetheless, in some applica-
tions, one can tolerate a certain level of inaccuracy in order
to capture a more diverse functional space that is not neces-
sarily Koopman invariant but captures important variables
such as the states of the system.

Statement of Contributions: We consider the problem of
data-driven identification of finite-dimensional spaces that
are close, with tunable accuracy, to being invariant under the
action of the Koopman operator. Our main result, illustrated
in Figure 1, consists of the synthesis of a computational
procedure, termed Tunable Symmetric Subspace Decompo-
sition (T-SSD), that given an arbitrary finite-dimensional
functional space, balances the trade-off between the expres-
siveness 1 of its subspaces and the accuracy of the Koopman
approximations on them.

1 We note that notions of expresiveness different that the one
adopted here are also possible. For instance, and although out of
the scope of the paper, expresiveness could also be understood
as the ability of the dictionary to describe specific finitely many
predefined observables of interest, such as state variables, in a
given set of coordinates.

SSD EDMD

Most Accurate Most Expressive
Accuracy

Expressiveness

Figure 1. T-SSD generalizes SSD and EDMD. Given an arbitrary
finite-dimensional functional space, by changing the design pa-
rameter ε ∈ [0, 1] in T-SSD, one can strike a balance between the
invariance proximity of the identified subspace (i.e., the accuracy
of the resulting model based on the available data) and its expres-
siveness.

The roadmap of supporting contributions leading to the de-
sign and full characterization of T-SSD is as follows. Our first
contribution builds on the observation that the proximity of
a functional space to being invariant is a measure of its (and
consequently its members’) prediction accuracy under finite-
dimensional Koopman approximations, as an exact invariant
subspace leads to exact predictions of the evolution of ob-
servables. We introduce the novel notion of ε-apart spaces to
measure invariance proximity using data snapshots sampled
from the trajectories of the unknown dynamics. Using this
notion, and given an arbitrary finite-dimensional functional
space spanned by a dictionary of functions, we formulate our
objective as that of finding a parametric family of subspaces
whose value of the parameter determines the desired level of
invariance proximity. This parametric family can be viewed
as balancing invariance proximity (i.e., prediction accuracy)
and the dimension of the subspace (i.e., expressiveness).

Given a desired accuracy parameter, our second contribution
is the design of T-SSD as an algorithmic procedure that finds
a functional space satisfying the desired accuracy by itera-
tively removing the functions in the span of the original dic-
tionary that violate the desired accuracy. We show that T-
SSD terminates in a finite number of iterations and character-
ize its computational complexity. Moreover, we show that its
identified subspaces contain the maximal Koopman-invariant
subspace and all Koopman eigenfunctions in the span of the
original dictionary. We also show that the accuracy parame-
ter bounds the relative root mean square prediction error for
all (uncountably many) functions in the identified subspace.
This advantage of the T-SSD algorithm in deriving accuracy
bounds on the prediction of individual functions indepen-
dently of linear changes of coordinates stems from focusing
on the subspaces instead of their basis. Our next contribution
establishes that both Extended Dynamic Mode Decomposi-
tion and Symmetric Subspace Decomposition algorithms are
particular cases of T-SSD, cf. Figure 1.

Our final contribution is a computationally efficient version
of T-SSD with drastically lower computational complexity
when the number of data snapshots is significantly larger than
the dimension of the original dictionary. We illustrate in sim-
ulation the effectiveness of T-SSD in identifying informative
Koopman approximations of tunable accuracy.

2 Preliminaries

Here, we introduce the notation used in the paper and pro-
vide a brief overview of Koopman operator theory, extended
dynamic mode decomposition (EDMD), and symmetric sub-
space decomposition (SSD).
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2.1 Notation

We let R, C, N0, and N represent the sets of real, complex,
nonnegative integer, and natural numbers respectively. Given
a matrixA ∈ Cm×n, we denote its transpose, conjugate trans-
pose, pseudo-inverse, range space, and Frobenius norm byAT ,
AH , A†, R(A), and ‖A‖F respectively. In addition, cols(A),
rows(A), ]cols(A), and ]rows(A) represent its set of columns,
set of rows, number of columns, and number of rows. Also
if A is a nonsingular square matrix, A−1 denotes its inverse.
Given A ∈ Cm×n and B ∈ Cm×p, we use [A,B] to represent
the matrix formed by their side by side concatenation. We
denote by 0m×n and In, the m×n zero matrix and the iden-
tity matrix of size n respectively (we omit the indices when

the context is clear). Given a vector v ∈ Cn, ‖v‖2 :=
√
vHv

denotes its 2-norm.

We denote by span{v1, . . . , vk} the vector space over C
spanned by v1, . . . , vk ∈ Cn. Given functions f1, . . . , fk,
span{f1, . . . , fk} is the functional space formed by all func-
tions in the form of c1f1 + · · ·+ ckfk with {ci}ki=1 ⊂ C. For a
vector space V ⊆ Rm, PV denotes the orthogonal projection
operator on V. For convenience, we denote the orthogonal
projection operator on the range space of a matrix A by PA,
which takes the form PA w = AA†w, for w ∈ Rm. For vectors
v, w ∈ Rm, v ⊥ w indicates that v and w are orthogonal.
Given vector spaces V1,V2 ⊆ Rm, V1 ⊥ V2 denotes that
the vector spaces are orthogonal, i.e., all vectors in V1 are
orthogonal to all vectors in V2. We define the sum of vector
spaces V1,V2 by V1 + V2 := {v1 + v2|v1 ∈ V1 ∧ v2 ∈ V2}.
Given sets S1, S2, we denote their union and intersection by
S1∪S2 and S1∩S2 respectively. Given functions f : S2 → S3,
g : S1 → S2, f ◦ g : S1 → S3 denotes their composition.

2.2 Koopman Operator

Our exposition follows [5]: given the discrete-time dynamics

x+ = T (x). (1)

defined on the state space M ⊆ Rn and a linear space of
functions F defined over the field C and closed under compo-
sition with T , the Koopman operator K : F → F associated
with (1) is defined as Kf = f ◦ T . The functions in F are
called observables. As a consequence of the linearity of F , the
Koopman operator is spatially linear, i.e.,

K(c1f1 + c2f2) = c1K(f1) + c2K(f2), (2)

for any f1, f2 ∈ F and c1, c2 ∈ C. The linearity of the Koop-
man operator paves the way for defining its eigendecomposi-
tion. Formally, a function φ ∈ F is an eigenfunction of the
Koopman operator with eigenvalue λ ∈ C if

Kφ = λφ. (3)

The eigenfunctions of the Koopman operator evolve linearly
in time on the trajectories of (1),

φ(x+) = φ ◦ T (x) = Kφ(x) = λφ(x). (4)

The linear temporal evolution of eigenfunctions combined
with (2) make the Koopman operator a powerful tool for
linear prediction of the functions’ values on the trajectories
of the (generally nonlinear) dynamical system (1). Formally,

given a function f =
∑Nk

i=1 ciφi, where {ci}Nk
i=1 ⊂ C and

{φi}Nk
i=1 are eigenfunctions of K with eigenvalues {λi}Nk

i=1, one
can predict the values of f on the trajectory starting from
initial condition x0 ∈M as

f(x(k)) =

Nk∑
i=1

ciλ
k
i φi(x(0)), ∀k ∈ N. (5)

Finally, a subspace L ⊆ F is Koopman-invariant if for every
f ∈ L, we have Kf ∈ L. Trivially, any subspace spanned by
Koopman eigenfunctions is Koopman invariant.

2.3 Extended Dynamic Mode Decomposition

In general, the Koopman operator is infinite dimensional.
Moreover, in many practical data-driven applications, the dy-
namical system is unknown and only data from some trajecto-
ries is available. These issues motivate the use of data-driven
methods to approximate the effect of the Koopman operator
on finite-dimensional subspaces, as we discuss next. Here, we
recall the Extended Dynamic Mode Decomposition (EDMD)
method following [42]. EDMD uses data from the trajecto-
ries of the system to approximate the action of the Koopman
operator on a predefined functional space. The first ingredi-
ent of EDMD is the data matrices X,Y ∈ RN×n containing
N data snapshots, where corresponding rows of X,Y charac-
terize two consecutive points on a trajectory of the system.
Formally,

yi = T (xi), ∀i ∈ {1, . . . , N}, (6)

where xTi and yTi are the ith rows ofX and Y respectively. The
second ingredient of EDMD is a dictionary D :M→ R1×Nd

of Nd functions, denoted as

D(x) = [d1(x), . . . , dNd
(x)], (7)

where di : M → R for all i ∈ {1, . . . , Nd}. The dictionary
spans a finite-dimensional space of functions over C, and its
elements can be complex-valued functions in general. How-
ever, since the system is defined over the state spaceM⊂ Rn,
complex Koopman eigenfunctions form complex conjugate
pairs which can be fully represented by a pair of real-valued
functions. For this reason, and without loss of generality, we
use real-valued functions as dictionary elements.

EDMD formulates a least-squares optimization to find the
best fit for the linear evolution of the dictionary functions on
the data,

minimize
K

‖D(Y )−D(X)K‖F . (8)

whose closed-form solution is

KEDMD = EDMD(D,X, Y ) := D(X)†D(Y ). (9)

KEDMD approximates the projection of the action of the
Koopman operator on span(D) as follows. Under the iden-
tification of CNd with span(D) defined by v ↔ D(·)v, this
approximation takes the form

v 7→ KEDMDv. (10)
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As a result, for the function f(·) = D(·)vf ∈ span(D), one
can define the EDMD’s approximation of Kf as

PKf = D(·)KEDMDvf . (11)

It is important to note that PKf can be viewed as the L2-
orthogonal projection of Kf on span(D) given an empirical
measure defined based on the rows ofX [17, 22]. Moreover, the
eigendecomposition ofKEDMD provides insight into the eigen-
decomposition of the Koopman operator. Formally, given an
eigenpair (λ, v) of KEDMD, one approximates an eigenfunc-
tion of the Koopman operator with eigenvalue λ as

φ(·) := D(·)v. (12)

Note that the EDMD predictor in (11) applied to the eigen-
function φ in (12) leads to PKφ = λφ, which is in agreement
with the linear evolution (4) of Koopman eigenfunctions. Note
that EDMD provides Nd Koopman (generalized) eigenfunc-
tion approximations even if the Koopman operator does not
have Nd eigenfunctions in the span of the dictionary. We re-
fer the reader to [22] for asymptotic convergence results as
Nd →∞, concerning KEDMD capturing the spectrum of the
Koopman operator as well as the finite-horizon prediction of
EDMD for observables in span(D).

If the dictionary D spans a Koopman-invariant subspace,
then EDMD completely captures the behavior of the
Koopman operator on span(D). As a result, ‖D(Y ) −
D(X)KEDMD‖F = 0, and (11) provides exact prediction,
independently of the data used for EDMD’s training. A fi-
nal note regarding EDMD is that it is not designed to work
with data corrupted with measurement noise. Hence, data
pre-processing might be needed to take full advantage of the
methods proposed in the paper, which rely on EDMD.

2.4 Symmetric Subspace Decomposition

In general, since the true system dynamics is unknown, choos-
ing a dictionary that spans a Koopman-invariant subspace
is challenging. This justifies the importance of developing
data-driven methods that aid in this task. Here, we recall the
Symmetric Subspace Decomposition (SSD) algorithm follow-
ing [14]. Starting from a dictionary D and data snapshots
X,Y , the SSD algorithm, cf. Algorithm 1, finds a basis for
the maximal Koopman-invariant subspace in span(D). To
achieve this goal, SSD relies on the following.

Assumption 2.1 (Full Rank Dictionary Matrices): The ma-
trices D(X) and D(Y ) have full column rank. �

Assumption 2.1 rules out the case of redundant dictionary el-
ements by making sure its functions are linearly independent.
Moreover, it requires the data snapshots to be sampled in a
way that reflects this fact.

The SSD algorithm provides an iterative approach to prune
the dictionary D at each iteration by removing the functions
that do not correspond to linear evolutions. The SSD algo-
rithm terminates after finite iterations and its output CSSD

satisfies the following properties.

Theorem 2.2 (SSD Output [14, Theorem 5.1]): Suppose that
Assumption 2.1 holds. Then,

(a) CSSD is either 0 or has full column rank;
(b) CSSD satisfies R(D(X)CSSD) = R(D(Y )CSSD);
(c) the subspace R(D(X)CSSD) is maximal, in the sense

that, for any matrix E with R(D(X)E) = R(D(Y )E),

Algorithm 1 Symmetric Subspace Decomposition

Inputs: D(X), D(Y ) ∈ RN×Nd Output: CSSD

1: Procedure CSSD ← SSD(D(X), D(Y ))
2: Initialization
3: i← 1, A1 ← D(X), B1 ← D(Y ), CSSD ← INd

4: while 1 do

5:

[
ZAi

ZBi

]
← null([Ai, Bi]) . Basis for the null space

6: if null([Ai, Bi]) = ∅ then
7: return 0 . The basis does not exist
8: break
9: end if

10: if ]rows(ZAi ) ≤ ]cols(ZAi ) then
11: return CSSD . The procedure is complete
12: break
13: end if
14: CSSD ← CSSDZ

A
i . Reduce the subspace

15: Ai+1 ← AiZ
A
i , Bi+1 ← BiZ

A
i , i← i+ 1

16: end while

we have R(D(X)E) ⊆ R(D(X)CSSD) and R(E) ⊆
R(CSSD). �

The dictionary identified by SSD is

DSSD(·) := D(·)CSSD. (13)

Based on Theorem 2.2, DSSD spans the largest subspace of
span(D) on which R(DSSD(X)) = R(DSSD(Y )). One can
apply the EDMD algorithm (equations (8)-(9)) on DSSD(X)
and DSSD(Y ) to find the predictor matrix

KSSD = EDMD(DSSD, X, Y ) = DSSD(X)†DSSD(Y ). (14)

The residual error ‖DSSD(Y )−DSSD(X)KSSD‖F is equal to
zero and KSSD fully captures the behavior of the available
data. Moreover, one can replace D and KEDMD in (11)-(12)
by DSSD and KSSD to define approximated Koopman eigen-
functions and linear predictors for the dynamics. Under rea-
sonable assumptions on the data sampling, span(DSSD) is
the maximal Koopman-invariant subspace in span(D) almost
surely and consequently the aforementioned eigenfunctions
and predictors are exact for all points (not just on the sam-
pled data) in the state space M almost surely. We refer the
reader to [14] for additional information about the SSD algo-
rithm, its convergence, and its properties regarding the iden-
tification of the eigenfunctions of the Koopman operator.

3 Problem Statement

We start by noting that one can view the SSD and EDMD
methods described in Section 2 as the two extreme cases in
the trade-off between prediction accuracy and dictionary ex-
pressiveness. This is because, on the one hand, the SSD pre-
dictor provides almost surely exact predictions for functions
in span(DSSD) but, due to the pruning of the original dictio-
nary D, this might not be sufficiently expressive to capture
the system dynamics. EDMD, on the other hand, provides
predictions for all functions in span(D), but there is no guar-
antee on the accuracy of this prediction.

Our goal is then to explore the accuracy-expressiveness spec-
trum in-between the extreme cases of SSD and EDMD. To do
this, we seek to provide a formal data-driven characterization
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of how close a functional space is to being invariant under
the Koopman operator (something we refer to as invariance
proximity). Equipped with this notion, we also aim to develop
computational methods that can find finite-dimensional func-
tional spaces that meet a desired level of invariance proxim-
ity. Throughout the paper we do not assume any information
about the dynamical system except the existence of a finite
data set of snapshots gathered from its trajectories.

Formally, given the original dictionary D defined in (7), data
snapshots matrices X,Y gathered from the dynamical sys-
tem (1) defined in (6), and assuming that Assumption 2.1
holds, we seek to:

(a) provide a measure to quantify the invariance proximity

of span of any dictionary D̃ with elements in span(D)
solely based on available data X,Y ;

(b) provide an algorithm that finds a dictionary D̃ with ele-
ments in span(D) that meets a desired level of invariance
proximity;

(c) such that span(D̃) contains the maximal Koopman-
invariant subspace in span(D).

Requirement (c) ensures the correctness of the algorithmic so-
lution by ensuring the maximal Koopman-invariant subspace
and all Koopman eigenfunctions in span(D) are captured.

4 ε-Apart Spaces Measure Invariance Proximity

In this section we provide a quantifiable measure for invari-
ance proximity of a subspace by studying the behavior of
EDMD with respect to its dictionary. Since the true system
dynamics is unknown, this measure must be based on the
available data matrices X and Y . To gain a deeper under-
standing about the behavior of the data-dictionary pair, we
offer the following interpretation of the action of the solution
KEDMD of the optimization (8) as a projection fromR(D(Y ))
onto R(D(X)). To see this, let w ∈ R(D(Y )) be a vector of
the form of D(Y )v. Using (9),

D(X)KEDMDv = D(X)D(X)†D(Y )v

= D(X)D(X)†w = PD(X)w,

where we have used that D(X)D(X)† is the projection
operator on R(D(X)). Using this projection viewpoint
alongside (8) reveals that the residual error ‖D(Y ) −
D(X)KEDMD‖F of EDMD, and consequently its accuracy
on the available data, depends of how close the subspaces
R(D(X)) and R(D(Y )) are. In fact, note that

• If D spans a Koopman-invariant subspace, we have
R(D(Y )) = R(D(X)) and the residual error of EDMD
is equal to zero independently of the data (as long as As-
sumption 2.1 holds). In this case, EDMD captures com-
plete dynamical information about the evolution of all
functions in span(D) and the predictor in (11) is exact;

• instead, if R(D(X)) ⊥ R(D(Y )), one can deduce that
under Assumption 2.1, KEDMD = 0Nd×Nd

and EDMD
captures no information about the dynamics. In par-
ticular, the residual error ‖D(Y ) − KEDMDD(X)‖F =
‖D(Y )‖F amounts to 100% prediction error for D(Y ).

These observations suggests that the proximity of the vector
spaces R(D(X)) and R(D(Y )) can be used as a quantifiable
characterization for invariance proximity of span(D) and con-
sequently the prediction accuracy of EDMD. This motivates
the following definition.

Definition 4.1 (ε-Apart Subspaces): Given ε ≥ 0, two vector
spaces S1, S2 ⊆ Rp are ε-apart if ‖PS1v − PS2v‖2 ≤ ε‖v‖2,
for all v ∈ S1 ∪ S2. �

According to this definition 2 , the norm of the error induced
by projecting a vector v belonging to one of the subspaces
is smaller than ε‖v‖2. Next, we show that this notion fully
characterizes equality of spaces with the case ε = 0.

Lemma 4.2 (0-apart Subspaces are Equal): Vector spaces
S1, S2 ⊆ Rp are 0-apart if and only if S1 = S2.

PROOF. (⇒): Let v ∈ S1. By definition, ‖PS1
v−PS2

v‖2 =
‖v − PS2v‖2 = 0, and hence v = PS2v. Consequently, v ∈
S2, showing S1 ⊆ S2. The inclusion S2 ⊆ S1 can be proved
analogously, and we conclude S1 = S2.

(⇐): Since S1 = S2, for all v ∈ S1 = S2, we have PS1
v =

PS2v = v. Hence, ‖PS1v − PS2v‖2 = 0, for all v ∈ S1 ∪ S2,
and the result follows. 2

The next result shows that all subspaces are 1-apart.

Lemma 4.3 (Any Two Subspaces are 1-apart): Any two vec-
tor spaces S1, S2 ⊆ Rp are 1-apart.

PROOF. For any v ∈ S1, one can write

‖PS1
v − PS2

v‖2 = ‖v − PS2
v‖2 = ‖(I − PS2

)v‖2 ≤ ‖v‖2,

where in the last equality we have used the fact that (I −
PS2

) is the projection operator on the orthogonal complement
of S2. One can write a similar argument for v ∈ S2, which
completes the proof. 2

Lemmas 4.2-4.3 together imply that the range [0, 1] for the
parameter ε fully characterizes the proximity of any two sub-
spaces. This enables us to use the concept of ε-apart sub-
spaces onD(X) andD(Y ) as a way to quantify the invariance
proximity of span(D) under the Koopman operator associ-
ated with the system (1). Equipped with this, we reformulate
next the problems (b)-(c) in Section 3.

Problem 4.4 (Balancing Prediction Accuracy and expres-

siveness):Given the parameter ε ∈ [0, 1], find a dictionary D̃
with elements in span(D) such that

(b) R(D̃(X)) and R(D̃(Y )) are ε-apart;

(c) span(D̃) contains the maximal Koopman-invariant sub-
space in span(D). �

It is worth mentioning that

ε∗ = min{ε ∈ [0, 1] | R(D(X)),R(D(Y )) are ε-apart}

captures the invariance proximity, and consequently the pre-
diction accuracy, ofD. As a result, if we choose ε < ε∗ in Prob-
lem 4.4, the new dictionary would be smaller than D, leading
to a decrease of the expressiveness of the resulting dictionary.
Hence, the choice of parameter ε strikes a balance between
prediction accuracy and expressiveness of the dictionary.

2 Note that, unlike Grassmannians, e.g. [1], there is no restriction
on the dimension of the subspaces in Definition 4.1.
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5 Tunable Symmetric Subspace Decomposition

In this section, we design and analyze an algorithm, termed
Tunable Symmetric Subspace Decomposition (T-SSD), to ad-
dress Problem 4.4.

5.1 The T-SSD Algorithm

Given the dictionaryD and data snapshotsX, Y , the problem
of finding a dictionary D̃ such that R(D̃(X)) and R(D̃(Y ))
are ε-apart can be tackled by pruning D. We next describe
informally the procedure and then formalize it in Algorithm 2.

[Informal description:] The pruning consists of identifying the
functions that violate the desired invariance proximity con-
dition and remove them from the dictionary. To identify such
functions, we define the projection difference matrix (Step 6
in Algorithm 2)

G = PD(X) − PD(Y ) = D(X)D(X)† −D(Y )D(Y )†,

which is a symmetric matrix with mutually orthogonal eigen-
vectors spanning RN (with corresponding real-valued eigen-
values). Interestingly, if all eigenvalues of G belong to [−ε, ε],
then D(X) and D(Y ) are ε-apart. Otherwise, we focus our
attention on the smaller subspace of RN defined by

Wε := span{v ∈ RN | Gv = λv, |λ| ≤ ε},

corresponding to the span of eigenvectors of G with eigen-
values in [−ε, ε]. For practical reasons, we work with a
basis for Wε (Step 7 in Algorithm 2). Next, we find the

largest dictionary D̃ with elements in span(D) such that

R(D̃(X)),R(D̃(Y )) ⊆ Wε (Steps 8-9 in Algorithm 2). There
are two possible outcomes:

(i) dim D̃ = dimD;

(ii) dim D̃ < dimD.

Scenario (i) indicates that the dictionary D does not need
pruning and R(D(X)),R(D(Y )) are ε-apart (Steps 15-17 in
Algorithm 2). On the other hand, scenario (ii) leads to a dic-
tionary of lower dimension. However, it is not guaranteed
that R(D̃(X)) and R(D̃(Y )) are ε-apart since D̃ is a differ-
ent dictionary than D. Consequently, we re-run the process,
starting with the definition of G, for the new dictionary D̃.
This leads to an iterative implementation that stops when the
dictionary cannot be reduced anymore (yielding the desired
ε-apart subspaces).

The formalization of this procedure yields the Tunable Sym-
metric Subspace Decomposition (T-SSD) 3 in Algorithm 2.
We make the following additional observations regarding the
use of notation to provide intuition about the algorithm pseu-
docode: (i) we index the internal matrix variables based on the
iteration number (this facilitates later the in-depth algebraic
analysis); (ii) noting that, at each iteration, the dictionary el-
ements are linear combinations of the elements of the original
dictionary, we represent the dictionary at iteration i simply
by a matrix Ci, which corresponds to the dictionary D(·)Ci;
(iii) using the representation in (ii), we do not need to form
the dictionary and apply it on the data matrices X and Y .

3 In Algorithms 2-3, the outputs of null(A) and basis(A) are
matrices whose columns form orthonormal bases for the null space
of A and R(A), respectively.

Instead, the effect of the dictionary at iteration i on the data
can be represented as Ai = D(X)Ci and Bi = D(Y )Ci.

Algorithm 2 Tunable Symmetric Subspace Decomposition

Inputs: D(X), D(Y ) ∈ RN×Nd , ε ∈ [0, 1]

1: Procedure T-SSD(D(X), D(Y ), ε)
2: Initialization
3: i← 0, A0 ← D(X), B0 ← D(Y ), C0 ← INd

4: while 1 do
5: i← i+ 1
6: Gi ← Ai−1A

†
i−1 −Bi−1B

†
i−1

. projection difference

7: Vi ← basis(span{v ∈ RN | Giv = λv, |λ| ≤ ε})
. eigenpairs corresponding to small eigenvalues

8: Ei ← Symmetric-Intersection(Vi, Ai−1, Bi−1)
. Find largest dictionary matrices in Vi (Algorithm 3)

9: Ci ← Ci−1Ei . reduce subspace
10: Ai ← Ai−1Ei, Bi ← Bi−1Ei

. calculate new dictionary matrices

11: if Ei = 0 then
12: return 0

. subspace does not exist, returning scalar 0

13: break
14: end if
15: if ]rows(Ei) ≤ ]cols(Ei) then
16: return Ci . procedure is complete
17: break
18: end if
19: end while

Algorithm 3 describes the Symmetric-Intersection function
in Step 8 of T-SSD: this strategy corresponds to the compu-
tation described above of the largest dictionary D̃ such that
R(D̃(X)) and R(D̃(Y )) belong to the reduced subspace Wε.
Similarly to Algorithm 2, instead of actually forming the re-
duced dictionary, Algorithm 3 uses the matrix-based repre-
sentation of the dictionary. Next, we explain the steps of the
algorithm and the reason behind its naming. Given input ma-
trices V , A, and B, Step 6 in Algorithm 3 identifies WA such
thatR(AWA) = R(V )∩R(A) (see Lemma A.1). Then, again
in Step 13 the algorithm (by virtue of Lemma A.1) finds the
matrix ZB such that R(BWAZB) = R(V ) ∩ R(BWA). The
output matrix E := basis(WAZB) (cf. Step 13) then spec-
ifies the largest subspaces R(AE), R(BE) both belonging
to R(V ). Note the symmetry in this specification: if a linear
combination of the columns of A is in R(V ), then the same
linear combination of columns of B belongs to R(V ). More-
over, Algorithm 3 breaks and returns 0 if any of the aforemen-
tioned intersections only contain the zero vector (Steps 2-4
and Steps 7-9).

Remark 5.1 (Implementation of Algorithm 3 on Finite-
Precision Computers): The accuracy of the implementation
of Algorithm 3 depends on the calculation of the null space
of several matrices, which might be sensitive to round-off er-
rors. To circumvent this issue, one can set sufficiently small
(according to a desired accuracy level) singular values of the
matrices to zero. �

5.2 Basic Properties of T-SSD

Our end goal now is to show that the T-SSD algorithm solves
Problem 4.4 and unveil its relationship with the EDMD and
SSD methods. In order to do so, we establish here several
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Algorithm 3 Symmetric Intersection

Inputs: V ∈ Rn×m and A,B ∈ Rn×p

1: Procedure Symmetric-Intersection(V,A,B)
2: if null([V,A]) = ∅ then
3: return 0
4: break
5: else

6:

[
WV

WA

]
← null([V,A])

. ]cols(V ) = ]rows(WV ), ]cols(A) = ]rows(WA)
7: if null([V,BWA]) = ∅ then
8: return 0
9: break

10: end if

11:

[
ZV

ZB

]
← null([V,BWA])

. ]cols(V ) = ]rows(ZV ), ]cols(BWA) = ]rows(ZB)
12: end if
13: return basis(WAZB) . Returning an orthogonal basis

basic algorithm properties.

Proposition 5.2 (Properties of Symmetric-Intersection):
Let matrices V,A,B have full column rank and E =
Symmetric-Intersection(V,A,B). Then,

(a) E = 0 or ETE = I;
(b) R(AE),R(BE) ⊆ R(V );
(c) E is maximal, i.e., any nonzero matrix F such that
R(AF ),R(BF ) ⊆ R(V ) satisfies R(F ) ⊆ R(E).

PROOF. (a) There are three ways for Algorithm 3 to ter-
minate. If the algorithm executes Steps 2-4 or Steps 7-9, we
have E = 0 by definition. Otherwise, the algorithm executes
Step 13. Hence, noting that WA and ZB exist and the ba-
sis function returns an orthonormal basis for WAZB , one can
conclude ETE = I.

(b) The case E = 0 is trivial. Suppose that E 6= 0 and hence
has full column rank according to part (a). By definition,
R(E) = R(WAZB). Consequently, based on Step 11 of the
algorithm and using Lemma A.1, we deduce

R(BE) = R(BWAZB)

= R(BWA) ∩R(V ) ⊆ R(V ), (15)

where in the first equality, we used Lemma A.2. More-
over, from the definition of E, one can deduce that
R(E) ⊆ R(WA). In addition, based on Lemma A.2, we have
R(AE) ⊆ R(AWA). Using the previous inequality in con-
junction with Lemma A.1 applied to Step 6 of the algorithm,
one can write

R(AE) ⊆ R(AWA) = R(A) ∩R(V ) ⊆ R(V ), (16)

which in conjunction with (15) concludes the proof of (b).

(c) Without loss of generality, we assume that F has full
column rank (if that is not the case, one can consider another
matrix F̄ with full column rank such that R(F ) = R(F̄ )).
Since R(AF ) ⊆ R(V ), we have R(AF ) ⊆ R(A) ∩ R(V ),
which leads to R(AF ) ⊆ R(AWA) based on (16). Moreover,

one can use Lemma A.2 to deduce that R(F ) ⊆ R(WA).
Since F and WA both have full column rank, there exists FW
with full column rank such that

F = WAFW . (17)

Considering that R(BF ) ⊆ R(V ) and R(BWAFW ) ⊆
R(BWA) in combination with (17), we deduce R(BF ) =
R(BWAFW ) ⊆ R(BWA) ∩ R(V ) = R(BWAZB), where the
last equality follows from (15). Based on Lemma A.2, we
deduce R(F ) ⊆ R(WAZB) = R(E). 2

Next, we show that T-SSD terminates after a finite number
of iterations.

Proposition 5.3 (Finite-time Termination of T-SSD Algo-
rithm): The T-SSD algorithm terminates after at most Nd
iterations.

PROOF. We reason by contradiction. Suppose that the al-
gorithm does not terminate before iteration Nd + 1. Hence,
the algorithm does not execute Steps 12-13 or Steps 16-17 in
the first Nd iterations. Therefore, the conditions in Steps 11
and 15 do not hold. Using Proposition 5.2(a), one can write

]rows(Ei) > ]rows(Ei)− 1 ≥ ]cols(Ei), (18)

for all i ∈ {1, . . . , Nd}. In addition, based on the defini-
tion of the Ei’s, one can deduce ]cols(Ei) = ]rows(Ei+1),
for all i ∈ {1, . . . , Nd}. Combining this with (18) leads
to ]rows(E1) ≥ ]cols(ENd

) + Nd. This fact together with
]rows(E1) = Nd and ]cols(ENd

) = ]cols(CNd
) (cf. Step 9) im-

plies that ]cols(CNd
) ≤ 0, contradicting ]cols(CNd

) ≥ 1. 2

Next, we study basic properties of the internal matrices of
the T-SSD algorithm.

Lemma 5.4 (Properties of T-SSD Matrices): Let the T-SSD
algorithm terminate in L time steps. Then,

(a) ∀i ∈ {0, . . . , L− 1}, R(Ci+1) ⊆ R(Ci);
(b) ∀i ∈ {0, . . . , L− 1}, CTi Ci = I;
(c) CL = 0 or CTLCL = I,

whereCi denotes T-SSD’s ith internal matrix, cf. Algorithm 2.

PROOF. (a) According to Step 9 of the algorithm, Ci+1 =
CiEi+1. Hence, R(Ci+1) = R(CiEi+1) ⊆ R(Ci).

(b) For i = 0, the result holds by definition. Moreover, since
the algorithm does not terminate until iteration L, it does
not execute Steps 12-13 in iterations {1, . . . , L − 1}. Hence,
Ei 6= 0 and based on Proposition 5.2(a), we have

ETi Ei = I, ∀i ∈ {1, . . . , L− 1}. (19)

Moreover, from Step 9, Ci = C0E1E2 · · ·Ei, ∀i ∈ {1, . . . , L−
1}. This in conjunction with (19) and C0 = INd

, implies
CTi Ci = I for all i ∈ {1, . . . , L− 1}, as claimed.

(c) Note that CL = CL−1EL. Based on Proposition 5.2(a),
either EL = 0 or ETLEL = I. In the former case, we have
CL = 0. In the latter case, CTLCL = CTL−1E

T
LELCL−1 =

CTL−1CL−1 = I, where in the last equality we used (b). 2
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For convenience, let

CT-SSD := T-SSD(D(X), D(Y ), ε), (20)

denote the output of the T-SSD algorithm. This leads to the
definition of the T-SSD dictionary

DT-SSD(·) := D(·)CT-SSD. (21)

To extract the dynamical information associated with the
Koopman operator on span(DT-SSD), we use EDMD. Accord-
ing to (9), we find the T-SSD prediction matrix as

KT-SSD := EDMD(DT-SSD, X, Y ) = DT-SSD(X)†DT-SSD(Y ).
(22)

We can also define approximated Koopman eigenfunctions
according to (12) using the eigendecomposition ofKT-SSD and
the dictionary DT-SSD. In addition, following (11), given any
function f ∈ span(DT-SSD) described by f(·) = DT-SSD(·)w,
we can define the T-SSD predictor of Kf on span(DT-SSD) as

PT-SSD
Kf (·) = DT-SSD(·)KT-SSDw. (23)

Remark 5.5 (Computational Complexity of T-SSD): Given
N data snapshots and Nd dictionary functions, and consid-
ering the complexity of scalar operations as O(1), the most
time-consuming step of Algorithm 2 is Step 7, which requires
the eigendecomposition of an N×N matrix and takes O(N3)
operations. Based on Proposition 5.3, the algorithm termi-
nates after at most Nd iterations, resulting in a total com-
plexity of O(N3Nd). �

6 T-SSD Balances Accuracy and Expressiveness

In this section we show that the output of T-SSD balances
prediction accuracy and expressiveness as prescribed by the
design parameter ε ∈ [0, 1].

6.1 T-SSD Identifies ε-Apart Subspaces

Here, we show that T-SSD solves Problem 4.4(b).

Theorem 6.1 (T-SSD Output Subspaces are ε-Apart):
R(DT-SSD(X)) and R(DT-SSD(Y )) are ε-apart.

PROOF. Let L ≤ Nd be the number of iterations for con-
vergence of the T-SSD algorithm (cf. Proposition 5.3). Based
on Proposition 5.2(a), we have EL = 0 or ETLEL = I. With
the notation of Algorithm 2, in the former case, the algo-
rithm executes Steps 12-13 at iteration L and consequently
CT-SSD = 0. Therefore,

R(DT-SSD(X)) = R(DT-SSD(Y )) = {0N×1},

and the result holds trivially. Now, suppose that ETLEL =
I. Hence, EL has full column rank and consequently
]rows(EL) ≥ ]cols(EL). However, since the algorithm exe-
cutes Steps 16-17, the condition in Step 15 holds and one can
write ]rows(EL) = ]cols(EL). Therefore, since EL has full
column rank, it is a nonsingular square matrix and

R(CL) = R(CL−1EL) = R(CL−1), (24a)

R(AL) = R(AL−1EL) = R(AL−1), (24b)

R(BL) = R(BL−1EL) = R(BL−1). (24c)

At iteration L, one can use Steps 6 and 7 in conjunction with
the fact that the eigenvectors of GL are mutually orthogonal
to write

‖GLv‖2 = ‖AL−1A†L−1v −BL−1B
†
L−1v‖2

= ‖PAL−1
v − PBL−1

v‖2 ≤ ε‖v‖2, (25)

for all v ∈ R(VL). Moreover, based on definition of EL and
Proposition 5.2(b),

R(AL−1EL),R(BL−1EL) ⊆ R(VL). (26)

Consequently, using AL = D(X)CL and BL = D(Y )CL, and
equations (24)-(26), we deduce

‖PD(X)CL
v − PD(Y )CL

v‖2 = ‖PAL
v − PBL

v‖2
= ‖PAL−1

v − PBL−1
v‖2 ≤ ε‖v‖2,

for all v ∈ R(D(X)CL) ∪ R(D(Y )CL). Since CL = CT-SSD,
and given the definition (21) of the T-SSD dictionary, this can
be rewritten as ‖PDT-SSD(X)v−PDT-SSD(Y )v‖2 ≤ ε‖v‖2, for all
v ∈ R(DT-SSD(X)) ∪ R(DT-SSD(Y )). Hence, R(DT-SSD(X))
and R(DT-SSD(Y )) are ε-apart. 2

We next build on Theorem 6.1 to characterize the accuracy
of predictions (23) for any function in span(DT-SSD) on the
available data.

Theorem 6.2 (Relative Root Mean Square Error (RRMSE)
of Koopman Predictions by T-SSD are Bounded by ε): For any
function f ∈ span(DT-SSD),√

1
N

∑N
i=1 |Kf(xi)−PT-SSD

Kf (xi)|2√
1
N

∑N
i=1 |Kf(xi)|2

≤ ε (27)

where xTi is the ith row of X and PT-SSD
Kf is defined in (23).

PROOF. For convenience, we use the compact notation D̃
to refer to DT-SSD throughout the proof. We first prove the
statement for real-valued functions in span(D̃). Let f(·) =

D̃(·)w with w ∈ R]cols(CT-SSD). From Theorem 6.1, one can

write ‖(PD̃(Y ) − PD̃(X))v‖2 ≤ ε‖v‖2, for all v ∈ R(D̃(X)) ∪
R(D̃(Y )). One can rewrite this equation as

‖(D̃(Y )D̃(Y )† − D̃(X)D̃(X)†)v‖2 ≤ ε‖v‖2, (28)

for all v ∈ R(D̃(X)) ∪ R(D̃(Y )). In addition, using equa-
tions (22) and (23), and the fact that Kf(xi) = f ◦ T (xi) =
f(yi) for all i ∈ {1, . . . , N}, one can write√√√√ N∑

i=1

∣∣Kf(xi)−PT-SSD
Kf (xi)

∣∣2 = ‖(D̃(Y )− D̃(X)KT-SSD)w‖2

= ‖(D̃(Y )− D̃(X)D̃(X)†D̃(Y ))w‖2
= ‖
(
D̃(Y )D̃(Y )† − D̃(X)D̃(X)†

)
D̃(Y )w‖2,
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where we have used D̃(Y ) = D̃(Y )D̃(Y )†D̃(Y ) in the last

equality. Moreover, since D̃(Y )w ∈ R(D̃(X))∪R(D̃(Y )), one
can use this equation in conjunction with (28) to write

√√√√ N∑
i=1

∣∣Kf(xi)−PT-SSD
Kf (xi)

∣∣2 ≤ ε‖D̃(Y )w‖2

= ε

√√√√ N∑
i=1

|Kf(xi)|2.

Scaling both sides by N−
1
2 yields (27) for real-valued func-

tions in span(D̃).

For the complex-valued case, let f(·) = D̃(·)w with w =
wre + jwim, wre, wim ∈ R]cols(CT-SSD) and wim 6= 0.

Consider the decompositions of f and PT-SSD
Kf as f(·) =

fre(·) + jfim(·) and PT-SSD
Kf (·) = PT-SSD

Kfre (·) + jPT-SSD
Kfim (·),

where

fre(·) = D̃(·)wre, fim(·) = D̃(·)wim, (29)

PT-SSD
Kfre (·) = D̃(·)KT-SSDwre, PT-SSD

Kfim (·) = D̃(·)KT-SSDwim.

Using (27) for the real-valued functions in (29),

N∑
i=1

|Kfre(xi)−PT-SSD
Kfre (xi)|2 ≤ ε2

N∑
i=1

|Kfre(xi)|2,

N∑
i=1

|Kfim(xi)−PT-SSD
Kfim (xi)|2 ≤ ε2

N∑
i=1

|Kfim(xi)|2.

By adding these two inequalities, using (29), and noting that
|g|2 = |gre|2 + |gim|2 for g = gre + jgim, one can write

N∑
i=1

|Kf(xi)−PT-SSD
Kf (xi)|2 ≤ ε2

N∑
i=1

|Kf(xi)|2,

and (27) follows. 2

Theorem 6.2 ensures that each member of the vector space of
functions identified by T-SSD has prediction error bounded
by the accuracy parameter ε.

Remark 6.3 (T-SSD Bounds the Relative L2-norm Error of
Koopman Predictions under Empirical Measure by ε): Given
the functions in span(D) and their composition with T are

measurable, consider the empirical measure µ = 1
N

∑N
k=1 δxk

,
where δxk

denotes the Dirac delta function at xk, the kth row
of X. Then Theorem 6.2 can be rewritten as

‖Kf −PT-SSD
Kf ‖L2

‖Kf‖L2

≤ ε, ∀f ∈ span(DT-SSD),

where the L2-norm is calculated with respect to the empirical
measure µ. �

6.2 T-SSD Captures Maximal Koopman-Invariant Subspace

Here, we show that T-SSD also solves Problem 4.4(c). To do
this, we study the relationship of the algorithm with Koop-
man eigenfunctions and invariant subspaces. We first show
that the T-SSD matrices capture the maximal Koopman-
invariant subspaces in the span of the original dictionary D.

Theorem 6.4 (T-SSD Matrices Capture the Maximal
Koopman-Invariant Subspace): Let Imax denote the maximal
Koopman-invariant subspace in span(D) and let Cmax be a
full-column rank matrix such that D(·)Cmax spans Imax (if
Imax = {0}, we set Cmax = 0). Then, for any ε ∈ [0, 1],

R(Cmax) ⊆ R(Ci), ∀i ∈ {0, . . . , L},

where L and Ci denote, respectively, the termination step and
the ith internal matrix of T-SSD.

PROOF. The result holds trivially if Imax = {0}. For the
case Imax 6= {0}, we reason by induction. For i = 0, columns
of C0 span the whole space. Hence, R(Cmax) ⊆ R(C0). Next,
assume R(Cmax) ⊆ R(Ci) for i ∈ {0, 1, . . . , L− 1} and let us
prove R(Cmax) ⊆ R(Ci+1). The invariance of Imax implies
thatR(D(X)Cmax) = R(D(Y )Cmax). Using the definition of
matrices A0, B0 in Algorithm 2, this can be equivalently writ-
ten as R(A0Cmax) = R(B0Cmax). Since R(Cmax) ⊆ R(Ci),
using Lemma A.2, we deduce

R(A0Cmax) ⊆ R(A0Ci), R(B0Cmax) ⊆ R(B0Ci).

Hence, PA0Ciw = w = PB0Ciw, for all w ∈ R(A0Cmax) =
R(B0Cmax), or equivalently,

‖PA0Ci
w − PB0Ci

w‖2 = 0,

∀w ∈ R(A0Cmax) = R(B0Cmax). (30)

Now, noting that Ai = A0Ci and Bi = B0Ci, one can use
Step 6 of Algorithm 2 and writeGi+1v = PA0Civ−PB0Civ, for
all v ∈ RN . This, combined with (30), yields R(A0Cmax) =
R(B0Cmax) ⊆ null(Gi+1). Therefore, since the eigenvectors
ofGi+1 with zero eigenvalue span null(Gi+1), we deduce from
Step 7,

R(A0Cmax) = R(B0Cmax) ⊆ R(Vi+1). (31)

Based on the induction hypothesis R(Cmax) ⊂ R(Ci), and
noting that Cmax and Ci have full column rank (Cmax by def-
inition and Ci from Lemma 5.4(b)), there exits a full-column
rank matrix Fi such that

Cmax = CiFi. (32)

Now, using (31)-(32), in conjunction with Proposition 5.2(c),
we deduce R(Fi) ⊆ R(Ei+1). Consequently, one can use
Lemma A.2 and write R(Cmax) = R(CiFi) ⊆ R(CiEi+1) =
R(Ci+1), concluding the proof. 2

Theorem 6.4 implies that the subspace identified by T-
SSD contains the maximal Koopman-invariant subspace
in span(D).

Corollary 6.5 (T-SSD Subspace Contains the Maximal
Koopman-Invariant Subspace): Let Imax be the maximal
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Koopman-invariant subspace in span(D). Given ε ∈ [0, 1], let
CT-SSD and DT-SSD be the output and dictionary identified by
T-SSD according to (20)-(21). Then, Imax ⊆ span(DT-SSD).

The next result shows that the eigendecomposition ofKT-SSD

captures all Koopman eigenfunctions (and corresponding
eigenvalues) in the span of the original dictionary.

Proposition 6.6 (KT-SSD Captures All Koopman Eigen-
functions in span(D)): Let φ be a Koopman eigenfunc-
tion in span(D) with eigenvalue λ. For ε ∈ [0, 1], let
KT-SSD in (22) be the T-SSD predictor matrix. Then,
φ ∈ span(DT-SSD) and there exists w with KT-SSDw = λw
such that φ(·) = DT-SSD(·)w.

PROOF. Note that φ must belong to the maximal
Koopman-invariant subspace Imax in span(D) which, from
Corollary 6.5, is included in span(DT-SSD) = span(D(·)CT-SSD).
Therefore, there exists a complex vector w of appropriate
size such that φ(·) = DT-SSD(·)w. Using now the interpre-
tation of KT-SSD as the EDMD solution with dictionary
DT-SSD and data X, Y , it follows from [14, Lemma 4.1](b)
that KT-SSDw = λw, as claimed. 2

Proposition 6.6 states that all eigenfunctions in the span of
the original dictionary D belong to the set of approximated
eigenfunctions calculated with the dictionary DT-SSD defined
by T-SSD.

Remark 6.7 (Monotonicity of T-SSD Subspaces): In gen-
eral, the output of the T-SSD algorithm is not monotonic
as a function of the design parameter ε, i.e., it might be the
case that span(Dε1

T-SSD) 6⊂ span(Dε2
T-SSD) for ε1 < ε2. In case

monotonicity is desirable for a specific application, one can
modify Step 7 of Algorithm 2 to remove only the eigenvector
with the largest eigenvalue (in magnitude) that exceeds the
desired accuracy level. This modification ensures monotonic-
ity in ε at the cost of requiring the modified algorithm more
iterations to terminate. All the results remain valid for the
modified version of the algorithm. �

7 EDMD and SSD are Special Cases of T-SSD

Consistent with our assertion that T-SSD balances accuracy
and expressiveness, here we show that EDMD on the original
dictionary (maximum expressiveness) corresponds to T-SSD
with ε = 1 and that SSD (maximum accuracy) corresponds
to T-SSD with ε = 0 4 . We start by showing an important
property of EDMD.

Lemma 7.1 (Linear Transformations Do not Change the In-
formation Extracted by EDMD): Let D1 and D2 be two dic-
tionaries such that D1(·) = D2(·)R, with R invertible. Let
Assumption 2.1 hold for both dictionaries given data matrices
X and Y . Define

K1
EDMD = EDMD(D1, X, Y ) = D1(X)†D1(Y ),

K2
EDMD = EDMD(D2, X, Y ) = D2(X)†D2(Y ).

Then, K1
EDMD = R−1K2

EDMDR. Therefore, (λ, v) is an eigen-
pair ofK1

EDMD if and only if (λ,Rv) is an eigenpair ofK2
EDMD.

4 We refer to KSSD and KT-SSD as SSD and T-SSD Koopman
approximations, which can be calculated by applying EDMD on
dictionaries identified by SSD and T-SSD respectively.

PROOF. Based on Assumption 2.1, we have K1
EDMD =(

D1(X)TD1(X)
)−1

D1(X)TD1(Y ). Using D1(·) = D2(·)R,

K1
EDMD =

(
RTD2(X)TD2(X)R

)−1
RTD2(X)TD2(Y )R

= R−1
(
D2(X)TD2(X)

)−1
D2(X)TD2(Y )R

= R−1D2(X)†D2(Y )R = R−1K2
EDMDR.

The rest follows from the properties of similarity transforma-
tions. 2

Lemma 7.1 states that the dynamical information captured
by the EDMD algorithm remains the same under linear trans-
formation of the dictionary. Note that the result does not re-
quire the dictionaries to span a Koopman-invariant subspace.
We are ready to show that EDMD applied to the original dic-
tionary is a special case of T-SSD.

Theorem 7.2 (EDMD is a Special Case of T-SSD with ε =
1): For ε = 1, let DT-SSD be the dictionary identified by T-
SSD, cf. (21). Then, span(DT-SSD) = span(D), andKT-SSD =
EDMD(DT-SSD, X, Y ) and KEDMD = EDMD(D,X, Y ) are
similar and capture the same dynamical information.

PROOF. In the first iteration of Algorithm 2, one can use
Step 6 and the definition of A0 and B0 to write

G1 = A0A
†
0 −B0B

†
0 = PD(X) − PD(Y ).

Since G1 is symmetric, its eigenvalues are real. Moreover,
they belong to [−1, 1], see e.g. [2, Lemma 1]. Therefore, since
ε = 1, using Step 7, one can deduce that the columns of V1
span RN . As a result,

R(D(X)) = R(A0) = R(A0INd
) ⊆ R(V1) = RN ,

R(D(Y )) = R(B0) = R(B0INd
) ⊆ R(V1) = RN .

This, combined with the maximality of E1 defined in Step 8,
cf. Proposition 5.2(c), implies R(INd

) ⊆ R(E1). Hence, E1 is
nonzero and has full column rank (cf. Proposition 5.2(a)). As
a result, nothing that ]rows(E1) = Nd , we deduce thatE1 is a
nonsingular square matrix. Therefore, R(C1) = R(C0E1) =
RNd . This and the fact that E1 is square mean that the condi-
tion in Step 15 is met and the algorithm executes Steps 16-17.
Consequently, CT-SSD = C1 is a nonsingular square matrix
and span(DT-SSD(·)) = span(D(·)CT-SSD) = span(D(·)), so
DT-SSD is a (potentially different) basis for the space spanned
by D. The rest of the statement follows from Lemma 7.1. 2

The SSD algorithm is also a special case of T-SSD.

Theorem 7.3 (SSD is a Special Case of T-SSD with ε = 0):
Let DSSD(·) be the dictionary identified by SSD, cf. (13), and,
for ε = 0, let DT-SSD be the dictionary identified by T-SSD,
cf. (21). Then, span(DT-SSD) = span(DSSD), and KT-SSD =
EDMD(DT-SSD, X, Y ) and KSSD = EDMD(DSSD, X, Y ) are
similar and capture the same dynamical information.

PROOF. Since ε = 0, Theorem 6.1 implies thatR(D(X)CT-SSD)
andR(D(Y )CT-SSD) are 0-apart. Therefore, from Lemma 4.2,
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R(D(X)CT-SSD) = R(D(X)CT-SSD). This, together with
Theorem 2.2(c), implies

R(CT-SSD) ⊆ R(CSSD). (33)

IfCSSD = 0, thenCT-SSD = 0, and the proof is complete. Sup-
pose instead that CSSD 6= 0, with full column rank, cf. Theo-
rem 2.2(a). We use induction to prove thatR(CSSD) ⊆ R(Ci),
where Ci is the internal matrix of the T-SSD algorithm for i ∈
{0, . . . , L} and L is the iteration at which it terminates. When
i = 0, the columns of C0 = INd

span RNd and, therefore,
R(CSSD) ⊆ R(C0). Assume then that R(CSSD) ⊆ R(Ci) for
i ∈ {0, . . . , L−1}, and let us prove thatR(CSSD) ⊆ R(Ci+1).

Based on Theorem 2.2(b), we have R(D(X)CSSD) =
R(D(Y )CSSD). This, together the definition of matrices
A0, B0 in Algorithm 2 and the fact that R(CSSD) ⊆ R(Ci),
yields

PA0Ci
w = PB0Ci

w = w, (34)

for all w ∈ R(A0CSSD) = R(B0CSSD). Now, since Ai =
A0Ci and Bi = B0Ci at iteration i + 1 of the T-SSD algo-
rithm, Gi+1v = PA0Ci

v − PB0Ci
v, for all v ∈ RN . This, to-

gether with (34), implies that R(A0CSSD) = R(B0CSSD) ⊆
null(Gi+1). Since ε = 0, from Step 7 we know that Vi+1 is a
basis for null(Gi+1), and therefore

R(A0CSSD) = R(B0CSSD) ⊆ R(Vi+1). (35)

By the induction hypothesis R(CSSD) ⊆ R(Ci). This, to-
gether with the fact that CSSD and Ci have full column rank
(the latter because of Lemma 5.4(b)), implies that there ex-
ists a matrix Fi with full column rank such that

CSSD = CiFi. (36)

Using now (35)-(36) together with the fact that Ai = A0Ci,
Bi = B0Ci, one can invoke Proposition 5.2(c) to deduce that
R(Fi) ⊆ R(Ei+1). Consequently,

R(CSSD) = R(CiFi) ⊆ R(CiEi+1) = R(Ci+1).

Hence, the induction is complete and

R(CSSD) ⊆ R(Ci), ∀i ∈ {1, . . . , L}. (37)

Since CSSD is nonzero and has full column rank, one can
deduce that CL is nonzero and has full column rank as a
result of Lemma 5.4(c). Consequently, the T-SSD algorithm
terminates by executing Steps 16-17. Therefore,CT-SSD = CL
and using (33) and (37), we have R(CT-SSD) = R(CSSD) and
consequently span(DT-SSD) = span(DSSD). The rest of the
statement follows from Lemma 7.1. 2

It is worth mentioning that, when implementing T-SSD for
ε = 0, we have found it useful to set ε to be a small positive
number (instead of zero) to avoid complications by round-off
errors.

Remark 7.4 (Dynamical Properties of T-SSD Subspace with
ε = 0): Given Theorem 7.3, the subspace identified by T-
SSD for ε = 0 enjoys important dynamical properties, cf. Sec-
tion 2.4: under reasonable conditions on the density of data

sampling, cf.[14, Theorems 5.7-5.8], the identified subspace is
the maximal Koopman-invariant subspace in the span of the
dictionary almost surely. Moreover, the eigenfunctions and
predictors identified by T-SSD are almost surely exact. �

8 Efficient Implementation of T-SSD

Here, we propose a modification to the implementation of
the T-SSD algorithm on digital computers to increase effi-
ciency. This is based on the following observation: a close
look at the form of the matrix Gi ∈ RN×N in Step 6 of
Algorithm 2 as a difference of projections reveals that its
eigenvectors are either in or orthogonal to the subspace
R(Ai−1) +R(Bi−1), see e.g., [2]. However, in Step 8, the ma-
trix Ei satisfies R(Ai−1Ei),R(Bi−1Ei) ⊆ R(Vi). Hence, the
Symmetric-Intersection function filters out all eigenvectors
of Gi that are orthogonal to R(Ai−1) +R(Bi−1), i.e., these
eigenvectors are never used. This is despite the fact that,
since generally N � Nd, such eigenvectors form a majority
of eigenvectors of Gi (at least N − 2Nd out of N).

This motivates us to seek a method that bypasses the calcu-
lation of the unused eigenvectors of Gi. To achieve this goal,
let Hi be a matrix such that

R(Hi) := R([Ai−1, Bi−1]), HT
i Hi = I]cols(Hi). (38)

The columns of Hi form an orthonormal basis of R(Ai−1) +
R(Bi−1). One can calculateHi by applying the Gram–Schmidt
process, or other closely related orthogonal factorization
method such as QR decomposition (see e.g. [40]), on
[Ai−1, Bi−1]. The next result shows that the eigendecom-
position of the matrix HT

i GiHi completely captures the
eigendecomposition of Gi on R(Ai−1) +R(Bi−1).

Proposition 8.1 (Eigenvectors ofHT
i GiHi Characterize All

Eigenvectors of Gi in R(Ai−1) +R(Bi−1)): Let Gi as defined
in Step 6 of Algorithm 2, and let Hi satisfy (38). Then, w ∈
CNd \ {0} is an eigenvector of HT

i GiHi with eigenvalue λ if
and only if v = Hiw is an eigenvector of Gi with eigenvalue λ.

PROOF. (⇐) By hypothesis, GiHiw = λHiw. Hence,
HT
i GiHiw = λHT

i Hiw = λw (where we have used (38)).

(⇒) By hypothesis, HT
i GiHiw = λw. Using (38), this can be

rewritten as

HT
i (GiHiw − λHiw) = 0. (39)

By definition of Gi, we can write GiHiw = PAi−1
(Hiw) −

PBi−1
(Hiw). From (38), we have R(Ai−1),R(Bi−1) ⊆

R(Hi). Since PAi−1(Hiw) ∈ R(Ai−1) and PBi−1(Hiw) ∈
R(Bi−1), we deduce that GiHiw ∈ R(Hi), and conse-
quently, GiHiw − λHiw ∈ R(Hi). However, from (39),
(GiHiw − λHiw) ∈ null(HT

i ). Therefore, since R(Hi) ⊥
null(HT

i ), we conclude GiHiw − λHiw = 0, as claimed. 2

Based on Proposition 8.1, we modify T-SSD to achieve higher
computational efficiency. Formally, the Efficient T-SSD al-
gorithm replaces Steps 6 and 8 of Algorithm 2 by

6.a: Hi ← basis([Ai, Bi])

6.b: Gi ← HT
i (Ai−1A

†
i−1 −Bi−1B

†
i−1)Hi

8: Ei ← Symmetric-Intersection(HiVi, Ai−1, Bi−1)
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These steps bypass the computation of the (unused) eigen-
vectors of Gi that are orthogonal to R(Ai−1) + R(Bi−1) in
the original T-SSD implementation.

Remark 8.2 (Computational Complexity of Efficient T-
SSD): Given N data snapshots and Nd dictionary functions,
and considering the complexity of scalar operations as O(1),
the most time-consuming steps of Efficient T-SSD are calcu-
lating Hi in (38) and the null space calculations in the func-
tion Symmetric-Intersection, which can be done in O(NN2

d )
operations. Since the algorithm terminates after at most
Nd iterations, cf. Proposition 5.3, the overall complexity is
O(NN3

d ). Compared to T-SSD, cf. Remark 5.5, the efficient

T-SSD algorithm provides a reduction of O(N2N−2d ), lead-
ing to a drastic reduction in run time for typical situations,
where N � Nd. �

9 Simulation Results

Here, we illustrate the effectiveness of our proposed methods
using three examples.

9.1 Hopf Normal Form

Consider the system [4, 29] onM = [−2, 2]2,

ẋ1 = x1 + 2x2 − x1(x21 + x22),

ẋ2 = −2x1 + x2 − x2(x21 + x22), (40)

with state x = [x1, x2]T , which admits an attractive peri-
odic orbit. We consider the discretized version of (40) with
time step ∆t = 0.01s and gather N = 104 data snapshots in
matrices X and Y , with initial conditions uniformly selected
from M. We consider the space of all polynomials up to de-
gree 10 spanned by all the Nd = 66 distinct monomials in
the form of

∏10
i=1 αi, with αi ∈ {1, x1, x2} for i ∈ {1, . . . , 10}.

To ensure resilience against machine precision errors and pro-
viding informative representations, we choose a dictionary D
with Nd = 66 functions such that the columns of D(X) are
orthonormal 5 .

We implement the Efficient T-SSD algorithm, cf. Section 8,
with ε ∈ {0.02, 0.05, 0.1, 0.15, 0.2}. Table 1 shows the dimen-
sion of the identified dictionary, DT-SSD, versus the value
of the design parameter ε. For ε = 0.2, T-SSD identifies
the original dictionary, certifying that the range spaces of
D(X) and D(Y ) are 0.2-apart. On the other hand, the one-
dimensional subspace identified by ε = 0.02 is in fact the
maximal Koopman-invariant subspace of span(D), spanned
by the trivial eigenfunction φ(x) ≡ 1 with eigenvalue λ = 1.

Table 1
Dimension of subspace identified by Efficient T-SSD vs ε for (40).

ε 0.02 0.05 0.10 0.15 0.20

dimDT-SSD 1 6 8 16 66

To demonstrate the effectiveness of the T-SSD algorithm in
approximating Koopman eigenfunctions and invariant sub-
spaces, we focus on the subspace identified with ε = 0.05. In

5 This dictionary can be found by first forming a dictionary com-
prised of the monomials and then performing a linear transfor-
mation on the dictionary to make the columns orthonormal. The
linear transformation does not impact the captured dynamical in-
formation (cf. Lemma 7.1).

accordance with Proposition 6.6, T-SSD identifies the triv-
ial eigenfunction φ(x) ≡ 1 spanning the maximal Koopman-
invariant subspace of span(D). T-SSD also approximates an-
other real-valued eigenfunction with eigenvalue λ = 0.9066,
whose absolute value is illustrated in Figure 2(right). Given
that |0.9066| < 1, this eigenfunction predicts the existence of
a forward invariant set (the periodic orbit in Figure 2(left))
at its zero-level set.
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Figure 2. Vector field and limit cycle of system (40) (left) and the
absolute value of eigenfunction with eigenvalue λ = 0.9066 (right).

In addition, T-SSD also identifies two pairs of complex eigen-
functions. For space reasons, we only show in Figure 3 one
eigenfunction with eigenvalue λ = 0.9938 + 0.0195j (the one
closest to the unit circle). Its phase characterizes the oscilla-
tion of the trajectories in the state space.
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Figure 3. Absolute value (left) and phase (right) of the eigenfunc-
tion with eigenvalue λ = 0.9938 + 0.0195j for (40).

To illustrate the efficacy of our algorithm regarding the pre-
diction accuracy of the dictionary, we consider the relative
linear prediction error associated with a dictionaryD at point
x given data snapshot matrices X and Y defined by

Erelative(x) :=
‖D ◦ T (x)−D(x)K‖2

‖D ◦ T (x)‖2
× 100, (41)

where K = EDMD(D, X, Y ). Figure 4 compares this error
on the state spaceM for the dictionary DT-SSD identified by
T-SSD with ε = 0.05 and for the original dictionary D. This
error is evaluated at points other than the training data X
and clearly shows the advantage of DT-SSD over the original
dictionary both in prediction errors and capturing the radial
symmetry of the vector field.

Noting that the error in (41) depends on the dictionary and
does not provide information about the subspace it spans (or
the individual members of the subspace), we also consider
the latter. For this reason, we use the data sampling strategy
used earlier to build a test data set denoted by snapshot ma-
trices Xtest and Ytest with Ntest = 104 samples. Given a dic-
tionary D, we evaluate the invariance proximity of span(D)
as the smallest ε such that R(D(Xtest)) and R(D(Ytest)) are
ε-apart. This data-driven measure is equivalent to the max-
imum relative root mean square error for a function in the
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Figure 4. Relative linear prediction error for dictionary identified
by T-SSD (ε = 0.05) (left) and the original dictionary (right
for (40).

span of a given dictionary D on the test data defined as

RRMSEmax(D, Xtest, Ytest)

= max
f∈span(D)

√
1
Nt

∑Nt

i=1 |Kf(xi)−PT-SSD
Kf |2√

1
Nt

∑Nt

i=1 |Kf(xi)|2
, (42)

where xTi and yTi correspond to the ith rows of Xtest and
Ytest respectively, yi = T (xi), and T is the map defining the
dynamics (40). The predictor PT-SSD

Kf is defined in (23) and
calculated based on the test data. It is important to note that
the evaluation of the error in (42) goes beyond the assump-
tions of Theorem 6.2, since the dictionary is identified with
the original data X,Y , but the error is evaluated on the test
data Xtest, Ytest (instead, the guarantee of Theorem 6.2 are
only valid when the error is evaluated on the original data).
Following the reasoning in the proof of Theorem 6.2 and Def-
inition 4.1, one can analytically show that

RRMSEmax(D, Xtest, Ytest) = λmax(PD(Xtest) − PD(Ytest)),

where λmax denotes the largest eigenvalue of the argument.
Table 2 shows the maximum relative root mean square error
for the subspaces identified by T-SSD given different values
of ε. According to Table 2, despite the fact that we have used
different data for identification and evaluation, the error on
the test data satisfies the upper bound accuracy requirement
enforced by the accuracy parameter ε .

Table 2
Maximum Relative Root Mean Square Error vs ε for (40).

ε 0.02 0.05 0.10 0.15 0.20

RRMSEmax ∼ 0 0.037 0.100 0.115 0.185

9.2 Duffing System

Consider the Duffing system [42] onM = [−2, 2]2,

ẋ1 = x2,

ẋ2 = −0.5x2 + x1(1− x21), (43)

with state x = [x1, x2]T , which has an unstable equilibrium at
the origin and two asymptotically stable equilibria at (−1, 0)
and (1, 0). We consider the discretized version of (43) with
time step ∆t = 0.02s and gather N = 104 data snapshots in
matrices X and Y from 5000 trajectories with length equal
to two time steps and initial conditions uniformly selected

from M. Similarly to the previous example, we use a dic-
tionary D with Nd = 66 elements spanning the space of all
polynomials up to degree 10 such that the columns of D(X)
are orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 8, with
ε ∈ {0.01, 0.02, 0.08, 0.14, 0.2, 0.26}. Table 3 shows the di-
mension of the identified dictionary, DT-SSD, versus the value
of the design parameter ε. For ε = 0.26, T-SSD identifies
the original dictionary, certifying that the range spaces of
D(X) and D(Y ) are 0.26-apart. On the other hand, the one-
dimensional subspace identified by ε = 0.01 is in fact the
maximal Koopman-invariant subspace of span(D), spanned
by the trivial eigenfunction φ(x) ≡ 1 with eigenvalue λ = 1.

Table 3
Dimension of subspace identified by Efficient T-SSD vs ε for (43).

ε 0.01 0.02 0.08 0.14 0.20 0.26

dimDT-SSD 1 2 20 44 58 66

To demonstrate the effectiveness of the T-SSD algorithm in
approximating Koopman eigenfunctions and invariant sub-
spaces, we focus on the subspace identified with ε = 0.02.
Consistent with Proposition 6.6, T-SSD identifies the triv-
ial eigenfunction φ(x) ≡ 1 spanning the maximal Koopman-
invariant subspace of span(D). T-SSD also approximates an-
other real-valued eigenfunction with eigenvalue λ = 0.9839
depicted in Figure 5(right), which clearly captures the attrac-
tiveness of the asymptotically stable equilibria and the gen-
eral behavior of the vector field depicted in Figure 5(left).
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Figure 5. Vector field (left) and eigenfunction with eigenvalue
λ = 0.9839 (right) for (43).

To illustrate the efficacy of our algorithm regarding the pre-
diction accuracy of the dictionary, Figure 6 compares the rel-
ative linear prediction error (41) on the state spaceM for the
dictionary DT-SSD identified by T-SSD with ε = 0.02 and for
the original dictionary D evaluated at out-of-sample points
other than X. Figure 6 clearly shows the effectiveness of the
T-SSD algorithm in improving the prediction accuracy.

<0.5% 0.5%-1% 1%-3% 3%-5% 5%-7% 7%<

Figure 6. Relative linear prediction error for dictionary identified
by T-SSD (ε = 0.02) (left) and the original dictionary (right)
for (43).
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To analyze the error for individual functions in the identified
subspaces by T-SSD, we form a random test data set Xtest,
Ytest gathered with the same number of elements and sam-
pling strategy used for X and Y . Table 4 shows the maxi-
mum relative root mean square error defined in (42) for the
subspaces identified by T-SSD given different values of ε. De-
spite the fact that we use different data for identification and
evaluation, Table 4 shows the effectiveness of the T-SSD al-
gorithm for identifying subspaces on which all functions have
prediction errors characterized by the accuracy parameter ε.

Table 4
Maximum Relative Root Mean Square Error vs ε for (43).

ε 0.01 0.02 0.08 0.14 0.20 0.26

RRMSEmax ∼ 0 0.004 0.054 0.123 0.190 0.236

9.3 Consensus on Harmonic Mean

Given Na agents with state x = [x1, . . . , xNa ]T communicat-
ing through a graph with adjacency matrix A, consider the
dynamics

ẋi = Na x
2
i Υ(x)−2

Na∑
j=1

aij(xj − xi), i ∈ {1, . . . , Na}, (44)

where aij is the element of A on row i and column j and Υ(x)
is the harmonic mean of the state elements defined as

Υ(x) = Na

( Na∑
k=1

x−1k

)−1
.

For any initial condition x0, all the state elements converge to
the harmonic mean of the initial condition Υ(x0) [7, Propo-
sition 10], i.e., the agents achieve consensus on Υ(x0). For
the purpose of this example, we consider Na = 5 agents com-
municating through an undirected ring graph and states be-
longing to the state space M = [1, 5]5. We consider the dis-
cretized version of (44) with time step ∆t = 0.01s and gather
N = 4×104 data snapshots in matricesX and Y from 2×104

trajectories with length equal to two time steps and initial
conditions uniformly selected from M. For our dictionary,
we consider the space of all polynomials up to degree 6 and
choose a dictionary D with Nd = 462 functions spanning the
space such that the columns of D(X) are orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 8, with
ε ∈ {0.05, 0.15, 0.3, 0.55, 0.8}. Table 5 shows the dimension of
the identified dictionary, DT-SSD, versus the value of the de-
sign parameter ε. For ε = 0.8, T-SSD identifies the original
subspace, certifying that the range spaces of D(X) and D(Y )
are 0.8-apart. On the other hand, the one-dimensional sub-
space identified by ε = 0.05 is in fact the maximal Koopman-
invariant subspace of span(D), spanned by the trivial eigen-
function φ(x) ≡ 1 with eigenvalue λ = 1.

Table 5
Dimension of subspace identified by Efficient T-SSD vs ε for (44).

ε 0.05 0.15 0.30 0.55 0.80

dimDT-SSD 1 14 64 272 462

To illustrate the efficacy of T-SSD algorithm regarding pre-
diction accuracy, we first form a test data set comprised of
snapshots matrices Xtest and Ytest sampled with the same

sampling strategy and number of samples as X and Y . Fig-
ure 7 provides histogram plots comparing the relative predic-
tion error defined in (41) of the dictionary identified by T-
SSD with ε = 0.15 and the original dictionary applied on the
test data. In Figure 7 the horizontal axis denotes the predic-
tion error while the vertical axis shows the percentage of test
data per interval. Figure 7 clearly shows the effectiveness of
the T-SSD algorithm in improving the prediction accuracy.

Figure 7. Relative linear prediction error on test data for the dic-
tionary identified with T-SSD (ε = 0.15) and the original dictio-
nary.

We also consider the prediction accuracy for the individual
functions. Table 6 shows the maximum relative root mean
square error defined in (42) for the subspaces identified by
T-SSD given different values of ε. According to Table 6, de-
spite using different data for identification and evaluation,
the error on the test data satisfies the upper bound accuracy
requirement enforced by the accuracy parameter ε.

Table 6
Maximum Relative Root Mean Square Error vs ε for (44).

ε 0.05 0.15 0.30 0.55 0.8

RRMSEmax ∼ 0 0.144 0.295 0.549 0.769

10 Conclusions

We have presented the T-SSD algorithm, a data-driven strat-
egy that employs data snapshots from an unknown dynami-
cal system to refine a given dictionary of functions, yielding
a subspace close to being invariant under the Koopman
operator. A design parameter allows to balance the predic-
tion accuracy and expressiveness of the algorithms’ output,
which always contains the maximal Koopman-invariant sub-
space and all Koopman eigenfunctions in the span of the
original dictionary. The proposed algorithm generalizes both
Extended Dynamic Mode Decomposition and Symmetric
Subspace Decomposition. Future work will investigate noise-
resilient strategies to approximate Koopman-invariant sub-
spaces and methods to construct expressive dictionaries with
high accuracy by alternating between growing the set of func-
tions (using specific basic functions or neural networks) and
pruning the dictionary to enhance accuracy while providing
accuracy bounds for all members of the identified vector
space of functions. Moreover, we aim to explore the applica-
tion of the proposed method in stability analysis, data-driven
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construction of Lyapunov functions 6 , and designing control
schemes with formal performance and stability guarantees
by using the Koopman operator to model control systems as
bilinear or switched-linear systems.
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A Basic Algebraic Results

Here we collect two algebraic results from [14] that are used
in our technical treatment.

Lemma A.1 ([14, Lemma A.1]): Let A,B ∈ Rm×n be ma-
trices with full column rank. Suppose that the columns of
Z = [(ZA)T , (ZB)T ]T ∈ R2n×l form a basis for the null space
of [A,B], where ZA, ZB ∈ Rn×l. Then,

(a) R(AZA) = R(A) ∩R(B);
(b) ZA and ZB have full column rank.

Lemma A.2 ([14, Lemma A.2]): Let A,C,D be matrices
of appropriate sizes, with A having full column rank. Then
R(AC) ⊆ R(AD) if and only if R(C) ⊆ R(D).
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