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Abstract: This paper focuses on the problem of designing linear functional observers for
unforced multi-output nonlinear systems. Existence conditions of linear functional observers for
a general nonlinear system are provided. The given conditions are necessary and sufficient for
the estimation of a single function of states for multi-output systems using a functional observer
with linear dynamics and a linear output map. Observer structure for a system satisfying the
conditions mentioned is also given. The theoretical results are confirmed by computer simulation.
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1. INTRODUCTION

In many practical applications, it is not possible to mea-
sure the states of the system. In those cases, we need an
observer to estimate the system states. Most of the times,
rather than the whole state vector, only a function of the
states is required to be observed or estimated. So, instead
of going for a full order or reduced order observer, we
can go for the design of a functional observer which will
estimate only the required function of states.

For linear systems, functional observers have been de-
signed in the past with the first major result given by
Luenberger (1971). Since then, considerable work has been
done (Aldeen and Trinh, 1999; Trinh and Fernando, 2012).
Mostly, the emphasis has been on designing the observer
with the minimum possible order (Fernando et al., 2010).
But for nonlinear systems, especially for the cases when
the function to be estimated is also a nonlinear function
of the states, not much work has been done. In Tami
et al. (2013), there has been efforts to do this using the
concepts of Z-observability and Partial Observability Nor-
mal Form (PONF). There has been an effort to generalize
Luenberger’s result for linear systems to nonlinear systems
in Kravaris (2011). But none of the works done so far
considers the design of functional observers for multi-
output nonlinear systems with the required function to
be estimated also being a nonlinear function of the states.
For nonlinear systems variety of methos and approaches of
exact linearization is available in literature (Kazantzis and
Kravaris, 1998; Kazantzis et al., 2000; Krener and Xiao,
2002, 2001) .

The existing result provides a direct generalization of
Luenberger’s linear theory of the functional observer for
nonlinear systems in Kravaris (2016). Inspired by the
above discussion, this paper tried to design functional

observers for multi-output unforced nonlinear systems. We
have specifically focused on designing linear functional ob-
servers for the estimation of a non-linear function of states
in nonlinear systems. We made use of the Lyapunov’s
auxiliary theorem mentioned in Lyapunov (1992) to obtain
the conditions that guarantee the existence of solutions of
a system of partial differential equations.

1.1 Main Contributions

The main contributions of this paper are as follows:

(1) The problem of designing linear functional observers
for multi-output nonlinear systems has been consid-
ered with . Existence conditions of linear functional
observers for a general nonlinear system are provided.

(2) The necessary and sufficient conditions are given for
the estimation of a single function of states for multi-
output systems using a functional observer with the
linear dynamics and a linear output map.

(3) The theoretical results are confirmed by computer
simulation result.

1.2 Organization of paper

This paper is organized as follows. Section 2 mentions
the problem statement. Section 3 provides the existence
conditions of a functional observer for a general nonlinear
system obtained from the direct generalization of Luen-
berger’s condition for linear systems and also gives the
structure of the observer if the dynamics and the output
map are constrained to be linear. In section 4, condi-
tions for the existence of a linear functional observer are
given. Section 5 gives the structure of the observer if the
conditions mentioned in section 4 are satisfied. Section 6
contains an example to show the effectiveness of the above
algorithm. Finally, section 7 concludes the paper.



2. PROBLEM STATEMENT

Consider an unforced multi-output nonlinear system de-
scribed by

dx

dt
= f(x)

y = h(x) (1)

z = q(x)

where x ∈ Rn is the state vector, y ∈ Rp is the output
vector and z ∈ R is the desired nonlinear function to
be estimated and f : Rn → Rn, h : Rn → Rp and
q : Rn → R are analytic functions. We are required
to estimate the function z with the measurement of the
outputs y without estimating the state vector x. Instead
of assuming that the system is observable like the normal
observer design, in case of functional observers, we need
not have that condition fulfilled in every case. The only
assumption, which we need to make is that the function
which we are required to estimate should lie in the span
of the observability matrix.

The problem that we have considered in this paper is to
design a linear functional observer of order v(≤ n − p) to
estimate z.

3. SOLUTION APPROACH

3.1 Generalization of Luenberger’s definition to nonlinear
systems

Generalizing Luenberger’s functional observer to nonlinear
system, the structure of the observer comes out to be

dξ̂

dt
= ϕ(ξ̂, y) (2)

ẑ = ω(ξ̂, y) (3)

where ξ̂ ∈ Rv is the observer state vector, ẑ ∈ R is the
observer output, ϕ : Rv ×Rp → Rv and ω : Rv ×Rp → R.
Existence of a mapping

ξ = θ(x) =

θ1(x)
...

θv(x)

 (4)

from Rn to Rv under the following conditions guarantee
the existence of a functional observer of vth order

∂θ(x)

∂x
f(x) = ϕ(θ(x), h(x)) (5)

q(x) = ω(θ(x), h(x)) (6)

3.2 Linearization of the functional observer

Constraining the dynamics and the output equation of
the above mentioned generalized functional observer to be
linear, (2) and (3) would be given by

dξ̂

dt
= Aξ̂ +By (7)

ẑ = Cξ̂ +Dy (8)

where A,B,C,D are v × v, v × p, 1 × v, 1 × p matrices
respectively. Then, the error dynamics of the observer
comes out to be

d

dt
(ξ̂ − θ(x)) = A(ξ̂ − θ(x)) (9)

which are stable if matrix A is chosen to be stable. But
we have to make sure that conditions (5) and (6) are
satisfied, i.e. we should be able to solve the system of
partial differential equations

∂θ(x)

∂x
f(x) = Aθ(x) +Bh(x) (10)

and then are able to express q(x) as

q(x) = Cθ(x) +Dh(x) (11)

Considering equation (10), the left hand side has matrix
∂θ(x)

∂x
with dimension v×n and f(x) with dimension n×1.

If we take the n elements of f(x) as fi(x) for (i = 1, . . . , n),
then equation (10) would be given by

n∑
i=1

∂θ1(x)

∂xi
fi(x)

...
n∑
i=1

∂θv(x)

∂xi
fi(x)

 = (12)

A11θ1(x) . . .+A1vθv(x) +B11h1(x) + . . .+B1php(x)
...

Av1θ1(x) . . .+Avvθv(x) +Bv1h1(x) + . . .+Bvphp(x)


(13)

where Aijs (i, j = 1, ..., v) and Bijs (i = 1, . . . , v, j =
1, . . . , p) are the elements of the A and B matrix, respec-
tively.

4. EXISTENCE CONDITIONS OF THE LINEAR
FUNCTIONAL OBSERVER

The conditions for the solvability of the system of partial
differential equations (12) could be obtained from Lya-
punov’s auxiliary theorem (Lyapunov, 1992; Kazantzis and
Kravaris, 1997).

4.1 Lyapunov’s Auxiliary Theorem

Let there be given a system of partial differential equations
n∑
s=1

(ps1x1 + ps2x2 + . . .+ psnxn +Xs)
∂zj
∂xs

(14)

= qj1z1 + qj2z2 + . . .+ qjkzk + Zj (j = 1, 2, . . . , k)

whereX1, X2, . . . , Xn, Z1, Z2, . . . , Zk are holomorphic fun-
ctions of the variables x1, x2, . . . , xn, z1, z2, . . . , zk becom-
ing zero when all these variables become zero. We assume:
that the functions Xs do not contain in their expansions
terms of the first degree; that the terms of first degree
appearing in the functions Zj do not depend on the quan-
tities z1, z2, . . . , zk; that the psσ, qjl are constants, such
that χ1, χ2, . . . , χn being the roots of the equation



∣∣∣∣∣∣∣
p11 − χ p12 . . . p1n
p21 p22 − χ . . . p2n
. . . . . . . . . . . .
pn1 pn2 . . . pnn − χ

∣∣∣∣∣∣∣ = 0 (15)

and λ1, λ2, . . . , λk those of the equation∣∣∣∣∣∣∣
q11 − λ q12 . . . q1k
q21 q22 − λ . . . q2k
. . . . . . . . . . . .
qk1 qk2 . . . qkk − λ

∣∣∣∣∣∣∣ = 0 (16)

the real part of all the χs are different from zero and have
the same sign, and that, moreover, the numbers χs and λj
are not related by any equation of the form

m1χ1 +m2χ2 + . . .+mnχn = λj (j = 1, 2, . . . , k) (17)

where all the ms are non-negative integers satisfying the
condition ∑

ms > 0

This agreed, we shall always be able to find a system
of holomorphic functions z1, z2, . . . , zk of the variables
x1, x2, . . . , xn, satisfying equations (14) and becoming zero
for

x1 = x2 = . . . = xn = 0.

Moreover there will be only one such system of functions.

If we compare (14) with (12), then the solvability condi-
tions for (12) are given by:

Condition A

(1) All the eigenvalues of
∂f

∂x
(0) should be nonzero and

of same sign.
(2) No eigenvalue λj of A should be of the form λj =∑n

i=1miχi, where χi(i = 1, . . . , n) are the eigenval-

ues of
∂f

∂x
(0).

4.2 Necessary and sufficient conditions for the functional
observer linearization

Without loss of generality, consider the dynamics of the
observer in the following controllable canonical form

dξ̂

dt
=


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−αv −αv−1 · · · −α1

 ξ̂ +


0 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0
1 k1 · · · kp−1

 y
This would imply that

∂θ(x)

∂x
f(x) =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−αv −αv−1 · · · −α1

 θ(x)+


0 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0
1 k1 · · · kp−1



h1(x)
h2(x)

...
hp−1(x)
hp(x)



which gives the following set of equations

Lfθ1(x) =θ2(x)

Lfθ2(x) =θ3(x)

...

Lfθv(x) =− αvθ1(x)− αv−1θ2(x)− · · · − α1θv(x)+

h1(x) + k1h2(x) + · · ·+ kp−1hp(x) (18)

where Lf denotes the Lie derivative along f .

Equation (18) when rewritten and upon repeated differen-
tiation gives the following equations

Lvfθ1(x) + α1L
v−1
f θ1(x) + · · ·+ αvθ1(x) = h1(x)+

k1h2(x) + · · ·+ kp−1hp(x)

Lvfθ2(x) + α1L
v−1
f θ2(x) + · · ·+ αvθ2(x) = Lfh1(x)+

Lfk1h2(x) + · · ·+ Lfkp−1hp(x)

...

Lvfθv(x) + α1L
v−1
f θv(x) + · · ·+ αvθv(x) = Lv−1

f h1(x)+

Lv−1
f k1h2(x) + · · ·+ Lv−1

f kp−1hp(x)

If we are able to express q(x) as linear output of the
observer, then (11) must be satisfied which gives us

q(x) =C1θ1(x) + C2θ2(x) + · · ·+ Cvθv(x)+

D1h1(x) +D2h2(x) + · · ·+Dvθv(x) (19)

Applying the operator Lvf + α1L
v−1
f + · · · + αv−1Lf +

αvI to both sides of the above equation and after simple
manipulations, we get

Lvfq(x) + α1L
v−1
f q(x) + · · ·+ αv−1Lfq(x) + αvq(x) =

D1L
v
fh1(x) + (D1α1 + Cv)L

v−1
f h1(x) + · · ·+ (D1αv−1

+ C2)Lfh1(x) + (D1αv + C1)h1(x) +D2L
v
fh2(x)+

(D2α1 + Cvk1)Lv−1
f h2(x) + · · ·+ (D2αv−1 + C2k1)

Lfh2(x) + (D2αv + C1k1)h2(x) + · · · · · · · · ·+
DpL

v
fhp(x) + (Dpα1 + Cvkp−1)Lv−1

f hp(x) + · · ·+
(Dpαv−1 + C2kp−1)Lfhp(x) + (Dpαv + C1kp−1)hp(x)

which could be written in more compact form as
v∑
i=0

αiL
v−i
f q(x) =

p∑
j=1

(
DjL

v
fhj(x)+

v−1∑
i=0

(Djαv−i + Ci+1kj−1)Lifhj(x)
)
(20)

with α0 = 1 and k0 = 1.
This means that for condition (11) to be satisfied for the
design of linear functional observer, (20) must be satisfied
in addition to the conditions obtained from Lyapunov’s
Auxiliary theorem for the solvability of the system of
partial differential equations (10). This condition could be
written as

Condition B We must be able to express Lvfq(x) +

α1L
v−1
f q(x) + · · · + αv−1Lfq(x) + αvq(x) as linear com-

bination of all the outputs and their Lie derivatives upto
vth order.



If we examine equation (20) carefully, then it becomes clear
that all the coefficients in the linear combination condition
are not independent. We have p outputs each with v + 1
constants. Out of these, only v + 2p − 1 are independent.
But, these could also be useful for the observer order
reduction than the single output case and even for the
existence of the linear functional observer in many cases
as would be clear from the example.

5. STRUCTURE OF FUNCTIONAL OBSERVER

Without loss of generality, consider the case when all
the coefficients related to h1(x) and its derivatives are
independent and for the rest of the outputs, first two, i.e.
those related to Lvfhi(x) and Lv−1

f hi(x) are independent.
Let the coefficients be βijs where i = 1, 2, · · · , p and
j = 0, 1, · · · , v and as per assumption, all β1js and βi0, βi1
are independent. Then the structure of observer with the
desired eigenvalues of A matrix comes out to be

˙̂
ξ =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−αv −αv−1 · · · −α1

 ξ̂+


0 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0

1
β21 − β20α1

β11 − β10α1
· · · βp1 − βp0α1

β11 − β10α1

 y (21)

ẑ = [β1v − αvβ10 β1v−1 − αv−1β10 · · · β11 − α1β10] ξ̂

+ [β10 β20 · · · βp0] y (22)

The error dynamics of the observer would be given by

ė =
˙̂
ξ − θ̇(x) =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−αv −αv−1 · · · −α1

 e (23)

Based on the above development, the design procedure is
now summarized by the Algorithm 1 as follows:

Algorithm 1

(1) Calculate the eigenvalues of
∂f

∂x
(0). All of them

should be non-zero and of same sign.
(2) Taking v as 1, check the validity of (20). If it is not

satisfied, increase the value of v by 1 and go like this
till (n−p). The value of v at which (20) gets satisfied,
becomes the order of the functional observer.

(3) Select the v eigenvalues of the A matrix such that
condition A(2) is satisfied and also we have the
desired degree of stability.

(4) The observer can then be designed using the structure
given in Section 5.

6. NUMERICAL EXAMPLE

Consider the following nonlinear system

ẋ1 =− x1 − x23 + x1x2x3 −
1

2
x33

ẋ2 =x1 −
1

2
x23 − x2

ẋ3 =− x3 + x1x2 −
1

2
x23

y =

[
x2
x23

]
The function which we are required to estimate is given
by

z = q(x) = x2 + 2x1 − x23

First of all, checking the eigenvalues of matrix
∂f

∂x
(0), i.e.

eigenvalues of

[−1 0 0
1 −1 0
0 0 −1

]
.

Eigenvalues of this matrix are all three −1, i.e. all are
non-zero and of same sign implying that condition A(1)
is satisfied. Satisfaction of (20) for v = 1 means that a
linear functional observer of order one exists and therefore,
observer matrix A would be having a single eigenvalue and
it should be selected in accordance with condition A(2).
Lets take A and hence the eigenvalue of observer matrix
as −5.5. Now, we have α1 as 5.5. According to (21) and
(22), the structure of functional observer is given by:

˙̂
ξ =− 5.5ξ̂ + [1 0.0247] y

ẑ =− 40.5ξ̂ + [10 0] y

The simulation result for the actual and the estimated
function value are shown in Fig. 1. The error between the
actual and the estimated function is shown in Fig. 2. From
these results, it is clear that the observer output follows
the required function even in the presence of large initial
error.
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Fig. 1. Actual and the estimated value of the function

7. CONCLUSIONS

In this paper, we have considered the problem of designing
a linear functional observer for an unforced multi-output
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Fig. 2. Error between actual and the estimated function

nonlinear system. The conditions for the existence of
the above observer are derived and the structure for the
resulting functional observer satisfying those conditions is
also proposed. The design procedure and performance of
the proposed method are illustrated through a numerical
example.

The application of the proposed concept in the var-
ious fields, such as sliding mode control (Singh and
Sharma, 2012; Singh, 2016; Singh and Janardhanan,
2015), Stochastic systems (Singh and Janardhanan, 2017a;
Sharma et al., 2017; Singh and Janardhanan, 2017b) are
left for the future.
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