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Abstract:
Sliding mode control (SMC) is used for the control of uncertain systems with known uncertainty
bounds. But most of the times, the uncertainty bounds are not known. Adaptive SMC (ASMC)
is used in these cases for the control of unknown but bounded systems. But ASMC, like the
conventional SMC, suffers from chattering. To overcome this drawback, we have proposed an
improved control algorithm which uses the concept of adaptive higher-order SMC (AHOSMC).
In the proposed algorithm, we have designed the first derivative of the control taking it as
the virtual control rather than the actual control itself. The gain-adaptation law does not
overestimate uncertainties. The proposed technique has been validated using simulation results.
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1. INTRODUCTION

Control under uncertainty conditions is one of the main
topics in control theory as in most of the practical cases,
system parameters are uncertain. This has lead to intense
interest in the development of the so called robust control
methods which are supposed to this problem. One partic-
ular approach to robust controller design is the so called
SMC technique. SMC guarantees the robustness for deal-
ing with parametric uncertainty and external disturbance
(Edwards and Spurgeon, 1998; Perruquetti, 2002). SMC
is a very popular tool for controlling nonlinear uncertain
systems if the bounds on uncertainty are known (Slotine
and Li, 1991; Utkin, 1977). But SMC suffers from the
disadvantage of chattering which is the occurrence of high
frequency finite amplitude oscillations. This chattering
phenomenon occurs due to the use of discontinuous signum
function and it could damage the actuators and systems.
There have been many approaches for the removal of
chattering like the use of approximation functions in place
of the signum function, observer based SMC or HOSMC
(Bartolini et al., 1998; Bartolini and Punta, 2000). One
approach is to approximate the signum function in the
control signal by a high gain saturation or sigmoid func-
tion and there by reducing the chattering (Utkin, 1992).
However, although the chattering can be removed the
robustness of the sliding mode is also compromised. Second
method is based on the observer design which suppresses
the high frequency oscillations of the control input (Lee
and Utkin, 2007). A third approach is to design a HOSMC
which retains the property of robustness, ensure finite
time convergence and also reduces the chattering (Levant,

1993). But, in all of these approaches, it is assumed that
the bounds on uncertainties are known.

If the bounds on uncertainties are unknown, then another
approach known as ASMC can be used. In this approach,
the gain of the controller is being tuned adaptively keeping
in mind that the gain is not overestimated so that the
magnitude of discontinuity in control is reduced to the
minimum possible value for which sliding mode would exist
(Bartolini and Punta, 2000; Plestan et al., 2010; Nasiri
et al., 2014; Zhu and Khayati, 2017). But ASMC, like
the conventional SMC, also suffers from the problem of
chattering.

An adaptive sliding mode trajectory tracking controller
is proposed to ensure asymptotic convergence of pose
tracking errors and adaptive estimates in Lyapunov frame-
work(Shtessel et al., 2016; Singh, 2016; Sun and Zheng,
2017; Fei and Lu, 2017). An adaptation scheme of the
controller gain is derived via Lyapunov method to improve
the control performance of the system (Levant, 2001a).
The ASMC strategy for the stabilization of the system
decreasing the chattering effect on the system due to the
adaptive gain of the controller that makes it more robust
and reliable in comparison with the state feedback control
strategy. For this reason, this strategy is proved to be
superior to the state feedback control approach, where the
stability, small chattering and convergence of the sliding
manifold in finite-time make it the best alternate for the
control (Geng and Wang, 2016).

To overcome the chattering drawback, we have proposed a
new AHOSMC algorithm in this paper. HOSMC uses the
concept of not only keeping the sliding variable but also



its derivatives to zero (Emel’yanov et al., 1996; Levant,
2003; Perruquetti, 2002; Levant, 2001b; Bartolini et al.,
2003). r th order sliding mode is said to exist if the
sliding variable and its r − 1 derivatives are zero. In
this paper, we have focused on the second order sliding
mode for the systems having relative degree 1 with respect
to the sliding variable and proposed an algorithm for
the design of the first derivative of the control as the
control rather than the actual control itself and then the
gain for the same is chosen to vary adaptively according
to the nearness to the sliding surface. For the systems
having relative degree greater than 1, the extension is
straightforward and has been mentioned. We have used
adaptive sliding mode (Ying-Jeh Huang and Chang, 2008;
Utkin and Poznyak, 2013; Plestan et al., 2010; Edwards
and Shtessel, 2016; Nasiri et al., 2014; Liu et al., 2014;
Durmaz et al., 2012) in which the gain of the controller
is varied adaptively according to the nearness to the
sliding surface so that the overestimation is avoided so
that magnitude of discontinuity in control is reduced to
the minimum possible value for which sliding mode would
exist.

1.1 Main Contributions

The main contributions of this paper can be summarized
as follows:

(1) An improved control algorithm is proposed, which
uses the concept of AHOSMC.

(2) We have designed the first derivative of the control
taking it as the virtual control rather than the actual
control itself.

(3) The switching gain-adaptation law does not overesti-
mate uncertainties.

(4) The proposed technique has been validated using
numerical examples.

1.2 Organization of Paper

The remaining part of this paper is organized as follows.
Section 2 mentions the problem which needs to be solved.
In section 3, the concepts of AHOSMC has been mentioned
briefly. After that, the control algorithm which has been
designed using AHOSMC techniques is given. Section 4
shows the effectiveness of the given algorithm through
simulation results. Finally, section 5 concludes the paper.

2. PROBLEM FORMULATION

Consider the nonlinear uncertain system

ẋ(t) = f(x(t)) + g(x(t))u (1)

where x(t) ∈ Rn is the state vector, u ∈ R is the control
input, f : Rn → Rn and g : Rn → Rn are smooth uncertain
functions. Furthermore, it is assumed that f(x) and g(x)
are bounded and g(x) 6= 0∀x. The bounds are unknown
but they exist. The desired or the reference trajectory is
given by xref (t). Choose the sliding surface as

σ(x) = ce(t) (2)

where e(t) ∈ Rn is the error vector x(t) − xref (t) and
c ∈ R1×n such that the polynomial

∑n
i=1 cis

i−1 is Hurwitz.

Our aim is to design a control signal to steer σ(x) to zero
in finite-time. Furthermore, the chattering in the input
should be removed.

Assuming that the relative degree of σ(x) with respect
to the control input u be 1 and considering the first and
second time derivatives of σ(x), we have

σ̇(x) = φ(x) + γ(x)u

σ̈(x) = Φ(x, u) + Γ(x)u̇ (3)

If we are able to steer σ(x) to zero in finite time by using
a discontinuous control signal u̇, then the corresponding
u would be continuous and hence chattering could be
avoided. Here, further we have to assume that all the
functions φ(x), γ(x),Φ(x) and Γ(x) are bounded and also
that γ(x) and Γ(x) 6= 0 ∀x.

3. DESIGN OF ADAPTIVE HIGHER ORDER
SLIDING MODE CONTROLLER (AHOSMC)

The design procedure for the overall AHOSMC is carried
out.

3.1 Higher Order Sliding Mode (HOSM)

Consider (1) but now the uncertainty bounds on f(x) and
g(x) are supposed to be known.

The control objective in case of rth order sliding mode is
to force the sliding variable σ and its r − 1 derivatives to
go to zero (Levant, 1993), i.e.

σ = σ̇ = σ̈ = · · · = σr−1 = 0 (4)

For the case of second order sliding, the control objective
(4) becomes

σ = σ̇ = 0 (5)

There are a number of algorithms to achieve the above
objective. If the relative degree of σ(x) with respect to
the input is 1, then there are control design algorithms
which consider designing of the virtual control v which
would be the derivative of the actual control u. But these
algorithms require the knowledge of bounds Φm,ΦM and
ΓM described by

Φm ≤ Φ(x, u) ≤ ΦM , 0 < Γm ≤ Γ(x) ≤ ΓM (6)

3.2 Proposed HOSMC

As mentioned previously, our solution algorithm would
combine the features of both the ASMC and HOSMC.
First of all, as mentioned previously, we will assume the
relative degree with respect to the input be 1. Then
without loss of generality, if we assume the system to be
in phase variable form, then it could be represented as

ẋi = xi+1 i = 1, 2, · · · , n− 1

ẋn = f(x) + g(x)u (7)

Choose the sliding surface as

σ = ce(t) = 0 (8)

Assuming y1(x) = σ(x) and y2(x) = σ̇(x), we have

ẏ1(x) = y2(x)

ẏ2(x) = Φ(x, u) + Γ(x)v (9)

Now, if we try to design v instead of u such that both
y1(x) and y2(x) go to zero, then the establishment 2-sliding



mode is guaranteed. Choose the manifold s for the above
as

s = y2 + |y1|
1
2 sgn(y1) (10)

Remark 1. (Singh, 2016) sgn denotes the standard signum
function. The signum function exhibits the property that
s. sgn(s) = |s|.
Proposition 1. If we are able to make s equal to zero, then
both y1 and y2 would go to zero in finite time.

Proof 1. First lets consider the case when y1 > 0. When s
becomes zero, we have

y2 = −y
1
2
1 (11)

which from (9) becomes

ẏ1 = −y
1
2
1 (12)

Rearranging, we have

−dy1

y
1
2
1

= dt

Integrating both the sides under the limits y1(0) to 0 and
0 to tf , we have ∫ 0

y1(0)

− 1

y
1
2
1

dy1 =

∫ tf

0

dt

which gives the time in which y1 becomes zero from its
initial value y1(0) as tf = 2

√
y1(0) which will always exist

since y1(0) is positive by assumption.
Similar argument follows when y1 is negative. This could
also be proved by selecting proper Lyapunov function and
then verifying the conditions of finite time convergence in
the derivative of the function. Once, y1 becomes zero, (11)
guarantees that y2 will also go to zero.

Auxiliary Problem Now, from proposition 1, we know
that if s in (10) becomes zero, then we are sure about the
establishment of 2-sliding mode. So, the auxiliary problem
now is to design our control such that s goes to zero in
finite time. From (10), we have

ṡ = ẏ2 +
1

2
|y1|−

1
2 y2

which from (9) becomes

ṡ = Φ(x, u) + Γ(x)v +
1

2
|y1|−

1
2 y2 (13)

Now, v appears in the equation for ṡ, we can take take
the Lyapunov function as s2 and design v such that finite
time convergence of s to zero is achieved. According to
conventional SMC, we can design the control as

v = −θsgn(s) (14)

where θ is a constant selected such that it is enough
to counter the uncertainty bounds in all the terms and
also gives a desired rate of convergence rate. But, now
the uncertainty bounds are unknown. Therefore, we can
choose θ based on the switching gain adaptive algorithm
given below:

3.3 Adaptation Switching Gain Law

In the presence of time-varying uncertainty, this work
proposes an adaptation law to update the value of the

switching gain θ that confirms stability of the constrained
system. The adaptation law chosen is given as

θ̇ =

{
θ̄||s|| sgn(||s|| − ε) if θ > µ

µ if θ ≤ µ (15)

where θ(0), θ̄, µ and ε are positive controller parameters to
be chosen. The value µ has been set to restrict the gain
from going to non-positive value. A stronger condition to
be chosen henceforth is θ(t) > µ, ∀t > 0. The parameter ε
defines a region around the sliding surface that indicates
closeness to the surface which will stop further variation in
the switching gain as establishment of ideal sliding mode
is not possible in real application.

Lemma 3.1. (Plestan et al., 2010) For a system defined
in (1) with sliding variable (s) dynamics (13) controlled
by the (14), and (15), the switching gain θ has an upper
bound i.e., there exists a positive constant θ∗ such that

θ(t) ≤ θ∗,∀t > 0.

Lemma. 3.1 has been utilized to ascertain the finite-time
convergence of the system states to the sliding manifold.

Theorem 3.2. For the given uncertain system (1) with
sliding variable (s) dynamics (13) controlled by (14) and
(15), there exists a finite time tF > 0 so that a real sliding
mode is established ∀t ≥ tF .

Proof 2. Let a Lyapunov function candidate of the form

V =
1

2
s2 +

1

2γ
(θ − θ∗)2.

The derivative of the Lyapunov function candidate w.r.t
time can be expressed as

V̇ = sṡ+
1

γ
(θ − θ∗)θ̇

= s(Φ(x, u) + Γ(x)v +
1

2
|y1|−

1
2 y2) +

1

γ
(θ − θ∗)θ̇

= s
(
Φ(x, u)− Γ(x)θ sgn(s) +

1

2
|y1|−

1
2 y2

)
+

1

γ
(θ − θ∗)θ̇

From (6) and Proposition 1, we can write

V̇ 6 (ΦM − Γmθ
∗) ||s||+ 1

γ
(θ − θ∗)θ̄ ||s|| sgn(||s|| − ε)

Adding and subtracting a term θ∗ ||s|| we get

= (ΦM − Γmθ
∗) ||s||+ (θ − θ∗)

(
− Γm||s||

+
θ̄

γ
||s|| sgn(||s|| − ε)

)
Introducing a positive value βk > 0 as

= (ΦM − Γmθ
∗) ||s|| − βk ||θ − θ∗||+ (θ − θ∗)

(
− Γm||s||

+
θ̄

γ
||s|| sgn(||s|| − ε)

)
+ βk ||θ − θ∗||

From Lemma. 3.1, there always exist a θ∗ such that θ −
θ∗ < 0 ∀ t > 0. This results in to

= −(−ΦM + Γmθ
∗) ||s|| − βk ||θ − θ∗|| −

(
− ||s||

+
θ̄

γ
||s|| sgn(||s|| − ε)− βk

)
||θ − θ∗||

= −βσ ||s|| − βk ||θ − θ∗|| − ζ
where, βσ = (−ΦM + Γmθ

∗) > 0 and ζ =
(
− Γm||s|| +

θ̄
γ ||s|| sgn(||s|| − ε)− βk

)
||θ − θ∗||.

Continuing



= −βσ
√

2
||s||√

2
− βk

√
2γ
||θ − θ∗||√

2γ
− ζ

6 −min{βσ
√

2, βk
√

2γ}
( ||s||√

2
+
||θ − θ∗||√

2γ

)
− ζ

6 −β V 1/2 − ζ

where β =
√

2 min{βσ, βk
√
γ}

Case 1: if ||s|| > ε, ζ is positive if,

−Γm||s||+
θ̄

γ
||σ|| − βk > 0⇒ γ <

θ̄ε

Γmε+ βk

With this condition holding, the time derivative of the
Lyapunov function becomes

V̇ 6 −βV 1/2

Case 2: if ||s|| 6 ε, ζ can be negative and it is not possible

to prove negative-definiteness of V̇ .
This proves that ||s|| converges to a region ε in finite time.
But once inside ε, the trajectory of the sliding variable
can not be ascertained. If at some tF1 the sliding state
goes beyond ε, i.e. ||s(tF1)|| > ε, there exists another finite
time tF2 when the states will re-converge to the region ε.
This proves the establishment of a real sliding mode.

Remark 2. The problem in the implementation of the
above algorithm would be that y2(x) might be unavailable.
In that case, we can use the first difference of y1(x) instead
of y2(x).

Remark 3. If the relative degree of the sliding variable
σ(x) with respect to the control input is greater than 1,
then the above algorithm could still be applied with a little
modification. We just have to modify the manifold s in
(10). The modification of the manifold should be done in
a manner that (r+1)−th sliding mode is established when
s becomes zero.

4. SIMULATION RESULTS

We considered the following nonlinear system

ẋ1 =x2

ẋ2 =x3

ẋ3 =− (1 + 0.3sin(t))x2
1 − (1.5 + 0.2cos(t))x2

− (1 + 0.4sin(t))x3 + (3 + cos(x1))u

The aim is to make the system follow the desired trajectory
given by xd = [sin(t) cos(t) -sin(t)]T . We assume while
designing the controller that the system dynamics are
unknown. The sliding surface function is chosen to be (8)
with c chosen as [12 5 7]. Clearly, the relative degree
with respect to the input is 1. The value of ε is taken to
be 0.001. The simulation results are as shown:
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Fig. 1. Controlled states using the proposed method
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Fig. 2. Error in the states
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Fig. 4. Sliding surface (σ) and its derivative (σ̇)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-30

-20

-10

0

10

20

30

V
ir

tu
a
l 

c
o
n

tr
o
l 

v

Fig. 5. Virtual control v
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Fig. 6. Chattering free actual control u
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Fig. 7. Adaptive controller gain θ

Proposed AHOSMC state trajectories response are shown
in Fig. 1. Error between the actual and reference states
responses are shown in Fig. 2. The sliding manifold s
obtained using the AHOSMC is smooth as shown in Fig.
3. The sliding surface σ and its derivative responses are
shown in Fig. 4. Virtual control input v response is given in
Fig. 5. Smooth chattering free control input u is shown in
Fig. 6. The convergence of the adaptive gain θ is confirmed
as illustrated in Fig. 7. From the simulation results, it is
clear that there is no chattering in the control u while the
desired performance is achieved.

5. CONCLUSIONS

This paper proposes an effective higher-order based adap-
tive sliding mode algorithm for the control of unknown
bounded systems. The control which is designed using the
algorithm given in the paper is found to be free from
chattering. The controller gain is varied adaptively and
overestimation of the gain is also avoided through the al-
gorithm mentioned. As a precaution, to avoid the increase
of controller gain boundlessly, the concept of real sliding is
used. Simulation results illustrated the benefits of the our
proposed AHOSMC over the existing ASMC method.

The application of the proposed concept in the various
fields, such as sliding mode control (Singh and Sharma,
2012; ?; Singh and Janardhanan, 2015), Stochastic systems
(Singh and Janardhanan, 2017a; Sharma et al., 2017;
Singh and Janardhanan, 2017b) are left for the future.
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