Jorge Cortés

Professor

Cymer Corporation Endowed Chair





Unsupervised learning for equitable DER control
Z. Yuan, G. Cavraro, A. Zamzam, J. Cortés
Electric Power Systems Research 234 (2024), 110634


Abstract

In the context of managing distributed energy resources (DERs) within distribution networks (DNs), this work focuses on the task of developing local controllers. We propose an unsupervised learning framework to train functions that can closely approximate optimal power flow (OPF) solutions. The primary aim is to establish specific conditions under which these learned functions can collectively guide the network towards desired configurations asymptotically, leveraging an incremental control approach. The flexibility of the proposed methodology allows to integrate fairness-driven components into the cost function associated with the OPF problem. This addition seeks to mitigate power curtailment disparities among DERs, thereby promoting equitable power injections across the network. To demonstrate the effectiveness of the proposed approach, power flow simulations are conducted using the IEEE 37-bus feeder. The findings not only showcase the guaranteed system stability but also underscore its improved overall performance.

pdf

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo