Jorge Cortés

Professor

Cymer Corporation Endowed Chair





Efficient computation of invariance proximity: closed-form error bounds for finite-dimensional Koopman-based models
M. Haseli, J. Cortés
Systems and Control Letters, submitted


Abstract

A popular way to approximate the Koopman operator's action on a finite-dimensional subspace of functions is via orthogonal projections. The quality of the projected model directly depends on the selected subspace, specifically on how close it is to being invariant under the Koopman operator. The notion of invariance proximity provides a tight upper bound on the worst-case relative prediction error of the finite-dimensional model. However, its direct calculation is computationally challenging. This paper leverages the geometric structure behind the definition of invariance proximity to provide a closed-form expression in terms of Jordan principal angles on general inner product spaces. Unveiling this connection allows us to exploit specific isomorphisms to circumvent the computational challenges associated with spaces of functions and enables the use of existing efficient numerical routines to compute invariance proximity.

pdf

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo