Jorge Cortés

Professor

Cymer Corporation Endowed Chair





Safe and dynamically-feasible motion planning using control Lyapunov and barrier functions
P. Mestres, Carlos Nieto-Granda, J. Cortés
IEEE Transactions on Robotics, submitted


Abstract

This paper considers the problem of designing motion planning algorithms for control-affine systems that generate collision-free paths from an initial to a final destination and can be executed using safe and dynamically-feasible controllers. We introduce the C-CLF-CBF-RRT algorithm, which produces paths with such properties and leverages rapidly exploring random trees (RRTs), control Lyapunov functions (CLFs) and control barrier functions (CBFs). We show that C-CLF-CBF-RRT is computationally efficient for a variety of different dynamics and obstacles, and establish its probabilistic completeness. We showcase the performance of C-CLF-CBF-RRT in different simulation and hardware experiments.

pdf

Mechanical and Aerospace Engineering, University of California, San Diego
9500 Gilman Dr, La Jolla, California, 92093-0411

Ph: 1-858-822-7930
Fax: 1-858-822-3107

cortes at ucsd.edu
Skype id: jorgilliyo